
Judicious: API Documentation for Novices
Luca Chiodini

luca.chiodini@usi.ch
Software Institute, Università della

Svizzera italiana
Lugano, Switzerland

Simone Piatti
simone.piatti@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Matthias Hauswirth
matthias.hauswirth@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Abstract
Programmers frequently consult API documentation to learn
how to use libraries, both those included with a program-
ming language and those offered by third parties. Beginner
programmers also have this need but struggle to browse
professional documentation systems, which are aimed at ex-
perienced programmers. Educators sometimes try to patch
this problem by writing simplified, ad hoc educational docu-
ments as a surrogate for a documentation system.

This paper presents Judicious, an API documentation sys-
tem explicitly designed for novice programmers. It allows
retrieving the documentation for one name at a time; of-
fers a clear and distinctive visual representation of functions
and constants; gradually presents more information such as
types, optional and variable-length parameters for functions;
highlights functions with side effects; and instantaneously
generates documentation also for functions defined in stu-
dent code.

Judicious’s design builds on prior research in the learning
sciences and programming languages. The gradual disclos-
ing of information matches the progression of increasingly
larger subsets of programming languages. The diagrammatic
representation, the clear distinction between functions and
constants, and the pinpointing of side effects aim to address
known novice misconceptions. The system is integrated into
a code editor and is publicly available as a web platform.

CCS Concepts: • Social and professional topics → Com-
puting education.

Keywords: introductory programming, documentation, API
ACM Reference Format:
Luca Chiodini, Simone Piatti, and Matthias Hauswirth. 2024. Judi-
cious: API Documentation for Novices. In Proceedings of the 2024
ACM SIGPLAN International Symposium on SPLASH-E (SPLASH-E
’24), October 24, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3689493.3689987

SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1216-6/24/10
https://doi.org/10.1145/3689493.3689987

1 Introduction
Programming is, at its core, using and defining abstractions.
Application Programming Interfaces (APIs) are the funda-
mental mechanism for programs to offer and use abstractions.
It should not be surprising then that APIs are ubiquitous.
Myers and Stylos [26] observed that “nearly every line of
code most programmers write will use API calls” when one
considers both public and private APIs.

The pervasiveness of API use in large software engineer-
ing projects is undisputed, but the same is true also for small
programs common in education. Even without considering
third-party APIs, which are sometimes avoided by educators
on the grounds of their complexity, didactic programs invari-
ably use APIs offered by the programming language, which
are sometimes collectively called the “standard library” of
the programming language. It suffices to think about exam-
ple programs common in introductory programming: de-
termining the length of the hypotenuse of a triangle using
Pythagoras’ theorem requires a function to compute the
square root, and writing a tiny game that asks the user to
guess a number requires a function to generate a pseudo-
random number. Moreover, these programs need to perform
input/output operations, which are also achieved using APIs.

Given the number and the size of software libraries, mem-
orizing all the details of APIs is an impossible task. Worse,
students wasting resources on memorizing the inessential is
a distraction from the goal of learning how to program.

Educators remind students that all libraries, especially the
ones that come standardwith the programming language, are
extensively documented and this reference documentation
can be checked at any time needed. However, the first expe-
rience of novice programmers with documentation systems
is often frustrating, as these systems are normally targeted
at professional developers. They have the significant advan-
tage of being exhaustive, at the expense of including several
concepts (such as language features or technical jargon) that
novices have not yet learned. They contain a lot of informa-
tion, which becomes hard to interpret. Figure 1 exemplifies
these issues, showing the official documentation of Python’s
print function: unless novices use a REPL, they cannot avoid
using the function to visualize the output. Unfortunately, its
documentation is unapproachable for students at that initial
stage, despite their program potentially being as simple as
print("Hello, world!"). To wit: professional documen-

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

89

https://orcid.org/0000-0002-2712-9248
https://orcid.org/0009-0006-2236-7745
https://orcid.org/0000-0001-5527-5931
https://doi.org/10.1145/3689493.3689987
https://doi.org/10.1145/3689493.3689987
https://creativecommons.org/licenses/by/4.0/

SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Luca Chiodini, Simone Piatti, and Matthias Hauswirth

Figure 1. Official documentation of Python’s print.

tation systems can be intimidating and overwhelming for
the beginner programmer.

This paper first describes existing documentation systems
that are used in education (Section 2). It then draws from
prior research in the learning sciences and programming
languages to motivate and illustrate in Section 3 the design of
Judicious, a novel documentation system explicitly designed
to accompany novices as they learn to program. Section 4
compares the new system to existing ones with respect to
several aspects, highlighting the chosen tradeoffs. Further
limitations of this work are pointed out in Section 5.

2 Background on Documentation
The landscape of documentation systems is rather rich and
varied. Some systems come standard with the tooling of a
programming language (e.g., Rust’s rustdoc), while others
need to be installed separately. A system can support a single
programming language (e.g., scaladoc for Scala) or multiple
programming languages (e.g., doxygen supports C/C++ but
also PHP, Python, and many others). Typically, documenta-
tion systems allow extracting information from source code
in different markup formats (e.g., reStructuredText) and can
produce documentation in several formats (e.g., HTML).

2.1 Documentation Systems
A systematic review of all documentation systems is out of
scope for this paper. We will rather focus on systems that
have known use in introductory programming, describing
them briefly.

2.1.1 Javadoc for Java. Java is a popular language for
teaching programming. The de-facto standard tool for docu-
menting Java programs is javadoc [25], originally developed
by Sun. The name Javadoc can also refer to the format used
to write Java comments (enclosed within /** and */) so that
they can be recognized by the tool.

Beginner programmers are likely to encounter web pages
generated with javadoc when browsing the functionality of
one of the many “collection classes” [2].

The pedagogical development environment BlueJ [24] of-
fers special support for Javadoc. Students can quickly use
a drop-down menu to generate the HTML version of the

documentation for the currently open file. The environment
nudges beginners towards writing Javadoc comments by
including them in the template for new classes. However,
a recent study [10] analyzed programs written with BlueJ
and did not find documentation comments half the time, de-
spite them being initially in the template. This suggests that
students and educators do not find enough value in writing
them, given what they get in return.

2.1.2 Scribble for Racket. Scribble is a collection of tools
to produce documents and can also serve as a documentation
system. Scribble is used to document Racket APIs, including
those offered by the beginner-friendly libraries included in
the “How to Design Programs” textbook [14].
The educational programming language Pyret [34] also

uses Scribble to document its libraries. The accompanying
“A Data-Centric Introduction to Computing” textbook [1] en-
courages students to consult the documentation to discover
the functions available in the libraries.

2.1.3 Sphinx for Python. Sphinx is a documentation sys-
tem originally developed for Python, which at the time of
writing is arguably the most common language used in intro-
ductory programming. Sphinx has then been extended to sup-
port other programming languages. It leverages docutils to
support multiple markup formats for writing documentation
comments.

Students end up visiting HTML pages generated by Sphinx
when looking at the documentation of the Python standard
library [3] or the API reference of the myriad of third-party
libraries available in Python’s ecosystem (e.g., pandaswhich
is common in “data science” courses [11]).

2.1.4 Pylance for Python. Visual Studio Code [4] is cur-
rently a popular environment for programming developed
by Microsoft. It targets professional developers, but is widely
used in education as well [33]. The environment supports
multiple programming languages, as language-specific ser-
vices (“Intellisense”) are provided by extensions that com-
municate with the editor via Language Server Protocol. Mi-
crosoft directly provides a Python extension that includes
a debugger and Pylance, a separate extension offering type-
checking, code completion, and documentation.

Programmers access the documentation by hovering over
a name. When Pylance can resolve what that name refers
to (e.g., a function), it displays a form of documentation in a
modal window as shown in Figure 2 for the sqrt function
imported from the math module.

2.2 Ad Hoc API Documentation
Systems that have been developed primarily with the needs
of professional programmers in mind can also be adopted in
education. On the one hand, educators may encourage the
use of these systems because of their authenticity. Students
feel that they are familiarizing themselves with tools also

90

Judicious: API Documentation for Novices SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

Figure 2. Pylance’s documentation of the sqrt function.

used in industry; this can contribute to a positive attitude
towards learning. On the other hand, full-fledged systems
can quickly overwhelm novices with information that is hard
for them to understand.
When the desire to offer a tailored experience prevails,

educators may adopt a simpler form of API documentation.
This ad hoc documentation is normally written manually and
included in textbooks or teaching materials.

WebTigerJython’s documentation of the gturtle Python
library [5] is an example of ad hoc documentation for stu-
dents. The API documentation assumes the form of a table
with three columns: a function, a possible abbreviation, and
a description in natural language. The function column con-
tains a signature of sorts. For example, the right function is
listed as right(angle) to indicate that it has one parameter
(the angle of rotation). The setPenColor function is listed as
setPenColor("color") presumably to indicate that it has
one parameter (the new color of the pen) of type str.
This form of documentation has the advantage of being

completely flexible. The author can decide exactly what to
present in the documentation, including which terminology
should be used, such that the documentation is just right for
the intended context.
Unfortunately, ad hoc documentation comes with major

drawbacks. First, as argued above, novices interact with doc-
umentation that is not authentic, which may be detrimental
to their motivation. Second, manually writing documenta-
tion is a time-consuming activity that not every educator can
afford, potentially having to resort to one written by some-
one else for a different context. Third, like with all manually
written documents, there is the risk of a lack of consistency:
different notations could be used throughout the document,
both intentionally and inadvertently, carrying the risk of
confusing the novice programmer.

3 A Pedagogical Documentation System
Can a documentation system be designed to retain most
of the benefits of real systems while incorporating sensible
pedagogical features?

This section presents Judicious, a minimalist documenta-
tion system we developed to assist beginner programmers
during their first steps in learning programming. Judicious is

released as open-source software at https://doi.org/10.5281/
zenodo.135925261.
The system targets Python, given its current popularity

as a programming language for learning programming. The
focus on a single programming language prevents a com-
binatorial explosion of the number of features needed to
accommodate each language’s idiosyncrasies. At the same
time, the pedagogical ideas embodied by Judicious are not
limited to Python and could be implemented for other pro-
gramming languages as well.

Judicious’s main characteristics revolve around how docu-
mentation is presented, rather than how documentation can
be programmatically extracted from source code. Currently,
the system supports manually specified documentation, au-
tomatic extraction from source code leveraging Sphinx, and
a simplified automatic extraction from source code as de-
scribed later in Section 3.6.

We proceed to illustrate each pedagogical feature of Judi-
cious in turn, presenting a rationale to motivate their need
and their design based on extant work from the learning
sciences and programming languages research communities.

3.1 Include a Diagrammatic Representation
From the very beginning, novice programmers have the need
to use functions, often the ones included in the standard li-
brary. Students first familiarize themselves with the concept
of a function in mathematics. Pure functions in programming
are exactly functions in the mathematical sense. Schanzer
[31] demonstrated that careful pedagogical choices facili-
tate the transfer of concepts—most prominently, functions—
between algebra and programming. We can thus resort to
techniques from mathematics education to help learners
bridge between the same concept in the two subjects.
A function is commonly explained as a “black box”, an

opaque machine that ingests something and produces some-
thing else. The notion is often visualized with a diagram that
represents the machine as a box with an entrance and an
exit. This notation has been brought into computer science
as well: Harvey uses a “plumbing diagram” to visualize the
composition of functions [18, Ch. 2]. This representation is
also known as the “Function as Tank” notional machine in
the collection presented by Fincher et al. [15].
Figure 3 depicts how Judicious includes a diagrammatic

representation of the simple sqrt function from the math
module. The function is represented as a rounded rectangle
with the function’s name at the center. Parameters are de-
picted as labeled incoming arrows from the left, the return
value as an outgoing arrow to the right.

Multiple (external) representations can aid learning, pro-
vided that learners understand the notation and the relation-
ship between the representation and the domain [7]. Indeed,
multiple pieces of information are related to the parameter

1A playground is currently available at https://judicious.vercel.app.

91

https://doi.org/10.5281/zenodo.13592526
https://doi.org/10.5281/zenodo.13592526
https://judicious.vercel.app

SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Luca Chiodini, Simone Piatti, and Matthias Hauswirth

Figure 3.Diagrammatic representation of the sqrt function.

named x in Figure 4. As customary in documentation sys-
tems, the parameter is shown in the function signature at the
top and further described in the list of parameters at the bot-
tom. Judicious clarifies the relationship between the element
in the diagram that refers to the parameter (the arrow on the
left) and the textual description: when a student hovers over
one of these elements, they all get highlighted as shown in
Figure 4.

Figure 4. Hovering over an element in the textual or dia-
grammatic representation highlights the corresponding parts
in the other representation.

3.2 Document One Name at a Time
One reason why programmers get discouraged from using
API documentation is the time it takes to retrieve what
one needs, perhaps because it is scattered over multiple
places [35]. Professional development environments recog-
nize this need and offer various forms “inline documentation”.
For example, as discussed earlier in Section 2.1.4, Visual Stu-
dio Code uses Pylance to show the documentation when
hovering over a known name (Figure 2).

Judicious offers that convenience to novices, sparing them
from opening a separate window to find the name they need
in the middle of many others. The system analyzes imported
names and shows them in an interactive “documentation bar”

above the code editor, allowing retrieving the documentation
of each name individually.

Figure 5. Judicious’s documentation bar includes both im-
ported and built-in functions.

Figure 5 shows how the documentation bar appears for
a toy program. Builtin functions (e.g., print, range) are
automatically detected when the source code contains a call
to them, without the need for imports.

3.3 Present Documentation Gradually
Computing education researchers have extensively studied
the struggles of novices when they begin learning to program
(see, e.g., the review by Qian and Lehman [30]). As part of
learning to program, beginners need to learn the syntax and
the semantics of a programming language. Programming
languages intended for professionals have the big appeal
of being used in industry; at the same time, they include a
multitude of language features that cannot all be explained at
the beginning. The size and complexity of such programming
languages can strain students’ cognitive load.

A strategy to simplify these languages to reduce the cog-
nitive load is to create smaller languages, also known as
sublanguages. There is a long tradition of doing so: Holt
and Wortman [20] created teaching sublanguages for PL/I,
Pagan [27] did the same for Algol 68. The “How to Design
Programs” textbook [14] introduced sublanguages of Racket.
The DrRacket programming environment [16] recognizes
these “student languages” and adapts its behavior depend-
ing on the chosen one. More recently, Hermans [19] created
Hedy, an educational language with a syntax that gradu-
ally evolves to reach the one of Python. Anderson et al. [9]
defined subsets of JavaScript to follow the “Structure and
Interpretation of Computer Programs” textbook [6].
Judicious applies this principle to documentation. Like a

programming language, the documentation should gradually
grow with the beginner programmer.

Figure 6 shows a progression of visualization of the same
log function, included in Python’s standard math library.
Toggle buttons at the top right allow learners to set their
preferences, potentially under the guidance of an instructor,
for what gets visualized.
At initial settings, the documentation of a function is

shown with the diagrammatic representation as in Figure 6a.
This matches what learners are used to in maths and can be
used to introduce the concept of a function.

92

Judicious: API Documentation for Novices SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

(a) Basic view with diagram (b) With optional parameters (c)With type annotations (d)Without diagram

Figure 6. A possible evolution of the documentation of the log function.

Once learners understand the basic mechanism of passing
arguments to a function, instructors can reveal that many
functions in Python can also take optional parameters. These
parameters are shown in Figure 6c with a corresponding
dashed arrow in the diagram.

To understand the behavior of programs, types also serve
as a useful form of documentation [28]. Originally a dynami-
cally typed language, Python now supports type annotations
since version 3.5. Some educators are reluctant to use them
because of the additional syntactic burden. However, types
are particularly useful in function signatures to signal in
a lightweight way which values the function accepts and
which ones it produces. Judicious gives users the choice of
whether types should be shown (Figure 6c), allowing instruc-
tors to introduce them only at the time they feel ready to.
Finally, when learners have mastered the concept of a

function, the diagrammatic representation can be hidden,
resulting in Figure 6d, to get a more compact documentation.

3.4 Distinguish Constants From Parameter-Less
Functions

Previous research has documented difficulties novices en-
counter with parameter-less functions and the potential con-
fusion with constants.
Altadmri and Brown [8] analyzed a year’s worth of Java

compilations from over 250 000 students in the Blackbox
dataset and found almost 19 000 instances in which over
10 000 students did not write parentheses after a method call
(e.g., when trying to call the .toString() method). This
study provided quantitative evidence about a mistake al-
ready reported by instructors [21]. Relatedly, the inventory
published by Chiodini et al. [12] contains a misconception
named “ParenthesesOnlyIfArgument” which describes the
belief held by some students that () are optional for function
calls without arguments.

Judicious attends to this problem and distinguishes be-
tween accessing a constant2 and calling a parameter-less func-
tion. Figure 7 and Figure 8 contrast the two situations, re-
spectively for pi from the mathmodule and random from the
random module. The distinction is even more pronounced in
the diagrammatic representation: the parameter-less func-
tion retains all the characteristics of functions but does not
have any incoming arrow on the left; the constant is depicted
as a blue rectangle with an arrowhead.

Figure 7. Documentation for the constant pi.

3.5 Indicate Functions With Side Effects
Figure 8 shows how Judicious indicates a function with side
effects. This aspect is too often neglected even by profes-
sional documentation systems, despite being essential for
highlighting the distinction between the general concept of
functions in programming and functions in math.
It has been observed that novices struggle to grasp the

distinction between returning a value in a function and print-
ing that value inside the function [23]. This distinction is
subtle, because didactic programs frequently print the value
returned by a function immediately.

2Strictly speaking, Python does not offer immutable variables, but it is
pedagogically sensible to treat library variables as such. The official doc-
umentation also uses “Constant” as the terminology for this case, e.g.,
https://docs.python.org/3/library/math.html#constants.

93

https://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument/
https://docs.python.org/3/library/math.html#constants

SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Luca Chiodini, Simone Piatti, and Matthias Hauswirth

Figure 8. Documentation for the parameter-less function
random.

It is not enough to distinguish between functions that
do not return values (sometimes called “procedures”), be-
cause also functions that return values can have side ef-
fects that are hard for beginners to see. After all, printing
is just one of the possible side-effecting operations. Func-
tions from the random library mutate the internal state of the
pseudo-random number generator. This behavior violates
the mathematical notion of a function (“always produce the
same output when the input is the same”) and deserves to
be pointed out explicitly.

3.6 Document Student-Defined Functions
So far we have described how documentation is presented,
without discussing the flip side: how documentation gets gen-
erated in the first place. Judicious allows novices to document
their functions in a lightweight way. The system leverages
an existing Python parser written in Rust and compiled to
WebAssembly, running entirely in the user’s browser. As
soon as a student defines a function, the documentation bar
automatically includes it and visualizes the available data
(Figure 9a). For example, when a student writes code that de-
fines a function greet, its documentation is readily rendered
as shown in Figure 9b.
Apart from a different icon displayed at the top of the

diagram, which indicates that this function is imported from
student code and not from Python’s standard library, every
other aspect of the documentation remains the same. This
unified design aims to help students understand that the
functions they import and use from a library are no different
from the ones they learn to define.

def greet(message: str, n_bangs: int) -> str:
"""Creates a greeting message ending with the
specified number of exclamation marks."""
return message + ("!" * n_bangs)

Listing 1. Example of a function defined in student code.
This is the same function shown in Figure 9a, with type
annotations and a docstring comment.

Students can then immediately appreciate the usefulness
of adding type annotations for the parameters and the return
value of a function. The function greet shown in Figure 9a
can be easily turned into Listing 1: it can be augmented with
types and a so-called “docstring”, a string inserted as the first
statement of a function that is treated as a documentation
comment. The documentation would then be rendered as
shown in Figure 9c. The increased intelligibility should prove
useful whenever the student needs a refresher on how to use
the function they defined a while ago.

4 Comparing Documentation Systems
We now compare the characteristics of our systemwith other
documentation systems. Given that programming languages
exhibit significant variety in terms of features, we restrict
the comparison only to documentation systems for Python.
For those systems, we consider the output format that begin-
ner Python programmers are most likely to encounter. We
thus compare Judicious’s web system to the HTML pages
produced by Sphinx (Section 2.1.3), which is used on the
official Python documentation, and Pylance (Section 2.1.4),
which is used in Visual Studio Code.

Table 1 synthesizes the results of this comparison, which
we now analyze in more detail.

4.1 Judicious’s Pedagogical Features
The upper part of Table 1 considers each key pedagogical
feature of Judicious described in Section 3.
The diagrammatic representation, the user-configurable

gradual display of the documentation, and the indication
of side effects are three characteristics unique to Judicious.
While the first two features are oriented toward novices,
it is somewhat surprising to see the two other systems we
analyzed do not report side effects. (However, this is not uni-
versally true: Scala programmers conventionally document
this distinction adding parentheses to effectful functions.)

All systems distinguish in some way functions from con-
stants, although only Judicious offers a distinct diagrammatic
representation as a further aid. Unlike Pylance and Judicious
which are integrated with the code editor and allow quickly
retrieving the documentation for a single name, Sphinx’s
HTML output is oriented to web pages and shows several
names on the same page.

All systems allow documenting functions defined by stu-
dents (as argued in Section 3.6, they are indeed no different
from functions present in libraries). Judicious and Pylance
offer a lightweight approach: beginner programmers can
access a minimalistic form of documentation for a function
they just defined with zero extra actions. This differs from
systems like Sphinx (or Javadoc), in which the programmer
needs to execute a separate tool.

94

Judicious: API Documentation for Novices SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

(a) Function in the documentation bar (b) Minimal documentation (c) Documentation types and docstring

Figure 9. Documentation of a student-defined greet function.

Table 1. Comparison of three documentation systems for Python.

Features Sphinx - HTML Pylance - VSCode Judicious - Web

§3.1: Diagrammatic representation No No Yes
§3.2: Single-name documentation No Yes Yes
§3.3: Gradual documentation No No Yes
§3.4: Functions vs. Constants Yes Yes Yes
§3.5: Side Effects indication No No Yes
§3.6: Student-defined functions Yes (heavyweight) Yes Yes
All language features Yes Yes No
Full coverage of libraries Yes Yes No
Extraction from source code Yes Yes Limited
Browsing an entire module Yes No No

4.2 Features Available in Other Systems
The lower part of Table 1 considers other aspects where Ju-
dicious falls short in comparison to professional documenta-
tion systems. Judicious only covers a small subset of Python’s
extensive feature set: this enables offering novice-friendly
functionalities, but excludes language features that are legit-
imately needed by proficient programmers. Moreover, Judi-
cious supports a limited form of extraction from source code:
it leverages a Python parser to extract functions from stu-
dent code as described in Section 3.6, and exploits Sphinx’s
docutils and autodoc utils to extract documentation from
the source code of existing libraries. However, the latter
approach cannot be applied to Python’s standard libraries
because they are partially implemented in C by Python’s
reference interpreter CPython and are not annotated with
standard docstrings. Indeed, the official documentation of
Python’s math library is written manually as a Sphinx docu-
ment. We had to use the same manual approach to document
those libraries in Judicious.
A separate problem, actively investigated in research, is

studying how developers discover the APIs they need. Mul-
tiple studies have revealed intricate retrieval patterns, of-
ten not well supported by existing programming environ-
ments and documentation systems [22, 32]. Crichton [13]
argues that programmers employ different kinds of leads

when searching (e.g., a description of a function behavior in
natural language or based on types) and proposes “scanning-
oriented” user interfaces. Judicious, like Pylance, is only
concerned with the visualization of the documentation of a
single name. The discoverability issue remains unaddressed
and deserves separate research.

5 Limitations
Judicious has been designed building on prior studies that
observed and tackled difficulties novices have when learning
to program. We analytically evaluated our system to compa-
rable state-of-the-art alternatives in Section 4, but the system
still lacks an empirical evaluation to measure its effectiveness
in practice. We received anecdotal positive feedback from
teachers who adopted it with their students on two aspects:
the diagrammatic representation, which helped to explain
functions, and the easiness of retrieving the documentation
for a name, which drastically increased student usage of doc-
umentation. The latter observation is not entirely surprising,
as reducing the friction is known to change the behavior
of users. For example, in an experiment, Google returned
search results with an additional 0.5 seconds delay and traffic
dropped by 20% [17].

The documentation system itself also has limitations, which
we discuss below.

95

SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Luca Chiodini, Simone Piatti, and Matthias Hauswirth

Despite the current popularity as an introductory pro-
gramming language, Python is a complex language with an
extensive number of features [29]. Judicious only supports
the small subset of these features to cover an “expression-
oriented“, “functional” subset of the language that is still
meaningful for a CS1 course [9]. The system thus supports
functions and constants but does not include classes with
their methods. In function definitions, in addition to “regular”
parameters, Judicious supports variable-length parameters
and parameters with default values, given their pervasive
use in Python (even print uses all these features!). Less com-
mon options (positional-only parameters and “kwargs”) are
not supported.
The documentation of the Python standard library has

been manually written for Judicious, considering the target
audience. The writing does not exhaustively describe the
functions: for example, it does not include which exceptions
might be thrown for invalid combinations of arguments,
and it reports a simplified version of the complicated types
which have been retrofitted to Python. Figure 2 exempli-
fies this predicament: Pylance reports an obscure custom
_SupportsFloatOrIndex type that accurately describes the
type of the parameter; Judicious resorts to float, which is
inaccurate but more intelligible for novices.
Concerning side effects, we note that Judicious does not

run sophisticated program analysis. Functions in the stan-
dard library are manually tagged as effectful and no purity
analysis is run on student-defined functions.

As described in Section 4, Judicious is currently limited to
document one name at a time. How to effectively support
programmers, including novice programmers, in browsing
documentation is still an active research area.

6 Conclusion
We presented Judicious, a novel documentation system de-
signed to assist beginners to learn programming in Python.
The system is integrated with a web code editor and freely
available at https://doi.org/10.5281/zenodo.13592526.
Judicious is not intended to become a full-fledged refer-

ence documentation for Python APIs, as its design includes
deliberate limitations. The unique pedagogical features of the
system include a diagrammatic representation of functions,
borrowed from mathematics education, and the progressive
gradual disclosure of more sophisticated information, at-
tuned to the idea of subsetting programming languages for
teaching.

We recommend future research to look into whether these
design choices, which can also be adopted in other program-
ming languages, translate into observable learning gains for
beginner programmers.

Acknowledgments
This work was partially funded by the Swiss National Science
Foundation project 200021_184689.

References
[1] [n. d.]. A Data-Centric Introduction to Computing. https://dcic-

world.org/.
[2] [n. d.]. Java® Platform, Standard Edition & Java

Development Kit Version 21 API Specification.
https://docs.oracle.com/en/java/javase/21/docs/api/index.html.

[3] [n. d.]. The Python Standard Library.
https://docs.python.org/3/library/index.html.

[4] [n. d.]. Visual Studio Code. https://code.visualstudio.com/.
[5] [n. d.]. WebTigerJython. https://webtigerjython.ethz.ch/.
[6] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. 1996. Struc-

ture and Interpretation of Computer Programs, (Second Edition) (second
edition ed.). Vol. 33. MIT Press, Cambridge, MA, USA.

[7] Shaaron Ainsworth. 2006. DeFT: A Conceptual Framework for Consid-
ering Learning withMultiple Representations. Learning and Instruction
16 (2006), 183–198.

[8] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations:
Investigating Novice Programming Mistakes in Large-Scale Student
Data. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). Association for Computing Machinery,
New York, NY, USA, 522–527. https://doi.org/10.1145/2676723.2677258

[9] Boyd Anderson, Martin Henz, Kok-Lim Low, and Daryl Tan. 2021.
Shrinking JavaScript for CS1. In Proceedings of the 2021 ACM SIGPLAN
International Symposium on SPLASH-E. ACM, Chicago IL USA, 87–96.
https://doi.org/10.1145/3484272.3484970

[10] Neil C. C. Brown, Pierre Weill-Tessier, Maksymilian Sekula, Alexandra-
Lucia Costache, and Michael Kölling. 2022. Novice Use of the Java
Programming Language. ACM Transactions on Computing Education
(July 2022). https://doi.org/10.1145/3551393

[11] Joshua Burridge and Alan Fekete. 2022. Teaching Programming for
First-Year Data Science. In Proceedings of the 27th ACM Conference
on on Innovation and Technology in Computer Science Education Vol.
1 (ITiCSE ’22). Association for Computing Machinery, New York, NY,
USA, 297–303. https://doi.org/10.1145/3502718.3524740

[12] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya
Tafliovich, André L. Santos, and Matthias Hauswirth. 2021. A Curated
Inventory of Programming LanguageMisconceptions. In Proceedings of
the 26th ACMConference on Innovation and Technology in Computer Sci-
ence Education V. 1 (ITiCSE ’21). Association for Computing Machinery,
New York, NY, USA, 380–386. https://doi.org/10.1145/3430665.3456343

[13] Will Crichton. 2020. Documentation Generation as Information Visu-
alization. arXiv:2011.05600 [cs]

[14] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2018. How to Design Programs, Second Edition: An
Introduction to Programming and Computing. MIT Press, Cambridge,
MA, USA.

[15] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Bene-
dict du Boulay, Matthias Hauswirth, Arto Hellas, Felienne Hermans,
Colleen Lewis, Andreas Mühling, Janice L. Pearce, and Andrew Pe-
tersen. 2020. Notional Machines in Computing Education: The Edu-
cation of Attention. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (ITiCSE-WGR
’20). Association for Computing Machinery, New York, NY, USA, 21–50.
https://doi.org/10.1145/3437800.3439202

[16] Robert Bruce Findler. [n. d.]. DrRacket: The Racket Programming
Environment. ([n. d.]).

[17] Google for Developers. 2008. Google I/O ’08 Keynote by Marissa
Mayer.

96

https://doi.org/10.5281/zenodo.13592526
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/3484272.3484970
https://doi.org/10.1145/3551393
https://doi.org/10.1145/3502718.3524740
https://doi.org/10.1145/3430665.3456343
https://arxiv.org/abs/2011.05600
https://doi.org/10.1145/3437800.3439202

Judicious: API Documentation for Novices SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

[18] Brian Harvey. 1997. Computer Science Logo Style: Symbolic Computing
(2 ed.). Exploring with LOGO, Vol. 1. MIT Press, Cambridge, MA, USA.

[19] Felienne Hermans. 2020. Hedy: A Gradual Language for Programming
Education. In Proceedings of the 2020 ACM Conference on International
Computing Education Research (ICER ’20). Association for Computing
Machinery, New York, NY, USA, 259–270. https://doi.org/10.1145/
3372782.3406262

[20] Richard C. Holt and David B. Wortman. 1974. A Sequence of Struc-
tured Subsets of PL/I. In Proceedings of the Fourth SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’74). ACM, New
York, NY, USA, 129–132. https://doi.org/10.1145/800183.810456

[21] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri.
2003. Identifying and Correcting Java Programming Errors for Intro-
ductory Computer Science Students. In Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’03). As-
sociation for Computing Machinery, New York, NY, USA, 153–156.
https://doi.org/10.1145/611892.611956

[22] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.
2006. An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance Tasks.
IEEE Transactions on Software Engineering 32, 12 (Dec. 2006), 971–987.
https://doi.org/10.1109/TSE.2006.116

[23] Tobias Kohn. 2017. Teaching Python Programming to Novices: Address-
ing Misconceptions and Creating a Development Environment. Ph. D.
Dissertation. ETH Zurich. https://doi.org/10.3929/ETHZ-A-010871088

[24] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg.
2003. The BlueJ System and Its Pedagogy. Computer Science Education
13, 4 (Dec. 2003), 249–268. https://doi.org/10.1076/csed.13.4.249.17496

[25] Douglas Kramer. 1999. API Documentation from Source Code Com-
ments: A Case Study of Javadoc. In Proceedings of the 17th Annual
International Conference on Computer Documentation. ACM, New Or-
leans Louisiana USA, 147–153. https://doi.org/10.1145/318372.318577

[26] Brad A. Myers and Jeffrey Stylos. 2016. Improving API Usability.
Commun. ACM 59, 6 (May 2016), 62–69. https://doi.org/10.1145/

2896587
[27] Frank G. Pagan. 1980. Nested Sublanguages of Algol 68 for Teaching

Purposes. ACM SIGPLAN Notices 15, 7 and 8 (July 1980), 72–81. https:
//doi.org/10.1145/947680.947687

[28] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT
Press, Cambridge, Mass.

[29] Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner War-
ren, Daniel Patterson, Junsong Li, Anand Chitipothu, and Shriram
Krishnamurthi. 2013. Python: The Full Monty. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications (OOPSLA ’13). ACM, New
York, NY, USA, 217–232. https://doi.org/10.1145/2509136.2509536

[30] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and
Other Difficulties in Introductory Programming: A Literature Review.
ACM Transactions on Computing Education 18, 1 (Oct. 2017), 1–24.
https://doi.org/10.1145/3077618

[31] Emmanuel Tanenbaum Schanzer. 2015. Algebraic Functions, Computer
Programming, and the Challenge of Transfer. Ph. D. Dissertation.

[32] Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich. 2014. Struc-
turing Documentation to Support State Search: A Laboratory Experi-
ment about Protocol Programming. In ECOOP 2014 – Object-Oriented
Programming, Richard Jones (Ed.). Springer, Berlin, Heidelberg, 157–
181. https://doi.org/10.1007/978-3-662-44202-9_7

[33] Jialiang Tan, Yu Chen, and Shuyin Jiao. 2023. Visual Studio Code
in Introductory Computer Science Course: An Experience Report.
arXiv:2303.10174 [cs]

[34] The Pyret Crew. [n. d.]. The Pyret Programming Language.
http://pyret.org/.

[35] Gias Uddin and Martin P. Robillard. 2015. How API Documentation
Fails. IEEE Software 32, 4 (July 2015), 68–75. https://doi.org/10.1109/
MS.2014.80

Received 2024-07-08; accepted 2024-08-08

97

https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/800183.810456
https://doi.org/10.1145/611892.611956
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.3929/ETHZ-A-010871088
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1145/318372.318577
https://doi.org/10.1145/2896587
https://doi.org/10.1145/947680.947687
https://doi.org/10.1145/947680.947687
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/3077618
https://doi.org/10.1007/978-3-662-44202-9_7
https://arxiv.org/abs/2303.10174
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/MS.2014.80

	Abstract
	1 Introduction
	2 Background on Documentation
	2.1 Documentation Systems
	2.2 Ad Hoc API Documentation

	3 A Pedagogical Documentation System
	3.1 Include a Diagrammatic Representation
	3.2 Document One Name at a Time
	3.3 Present Documentation Gradually
	3.4 Distinguish Constants From Parameter-Less Functions
	3.5 Indicate Functions With Side Effects
	3.6 Document Student-Defined Functions

	4 Comparing Documentation Systems
	4.1 Judicious’s Pedagogical Features
	4.2 Features Available in Other Systems

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

