
Joey Bevilacqua, Luca Chiodini, Igor Moreno Santos, Matthias Hauswirth

1. Students solve a programming assignment

Either writing code by themselves... or with the help of a Large Language Model.

class LinAlgebra {
 double[] scale(double a, double[] x) {
 ...
 }
 double scaledAt(double a, double[] x, int oneBasedPos) {
 return scale(a, x)​[oneBasedPos - 1];
 }
}

2. Our system selects interesting expressions

Our system selects an expression from the code submitted by each student
based on the criteria set by the instructor.

class LinAlgebra {
 double[] scale(double a, double[] x) {
 ...
 }
 double scaledAt(double a, double[] x, int oneBasedPos) {
 return scale(a, x)​[oneBasedPos - 1];
 }
}

include an array accessinclude a method call

3. Activities based on the notional machine are generated

The system automatically generates all the nodes, including distractors.

4. Students solve the activities

This requires demonstrating an understanding of the structure and the type
of all subexpressions.

5. Our system gives feedback to each student

Incorrect nodes are highlighted, without revealing the full correct solution.

6. The instructor has an overview of the entire class

The system aggregates the data and provides a dashboard to the instructor.

Using Notional Machines to Automatically Assess
Students' Comprehension of Their Own Code

Do your students understand their own code?
expressiontutor.org

