
Two Approaches for Programming Education in the Domain of
Graphics: An Experiment

Luca Chiodinia , Juha Sorvab , Arto Hellasb , Otto Seppäläb , and
Matthias Hauswirtha

a Software Institute, Università della Svizzera italiana, Lugano, Switzerland
b Department of Computer Science, Aalto University, Espoo, Finland

Abstract
Context Graphics is a popular domain for teaching introductory programming in a motivating way, even in
text-based programming languages. Over the last few decades, a large number of libraries using different
approaches have been developed for this purpose.
Inquiry Prior work in introductory programming that uses graphics as input and output has shown positive
results in terms of engagement, but research is scarce on whether learners are able to use programming
concepts learned through graphics for programming in other domains, transferring what they have learned.
Approach We conducted a randomized, controlled experiment with 145 students as participants divided
into two groups. Both groups programmed using graphics in Python, but used different approaches: one
group used a compositional graphics library named PyTamaro; the other used the Turtle graphics library from
Python’s standard library. Student engagement was assessed with surveys, and programming knowledge with
a post-test on general programming concepts and programming tasks in the domain of graphics.
Knowledge We find few differences between the two groups on the post-test, despite the PyTamaro group
having practiced on problems isomorphic to those in the post-test. The participants traced a compositional
graphics program more accurately than a ‘comparable’ turtle graphics program. Both groups report high
engagement and perceived learning; both perform well on simple program-writing tasks to create graphics.
Grounding Our findings are based on a controlled experiment with a count of 145 participants, which exceeds
the sample size indicated by power analysis to detect a medium effect size. The complete instrument and
teaching materials used in the study are available as appendixes.
Importance This study adds further evidence that graphics is an engaging domain for introductory program-
ming; moreover, it shows that the compositional graphics approach adopted by PyTamaro yields engagement
levels comparable to the venerable turtle approach. Compositional graphics code appears to be easier to trace
than turtle graphics code. As for conceptual knowledge, our results indicate that practicing on programming
tasks isomorphic to those of the test can still not be enough to achieve better transfer. This challenges pro-
gramming educators and researchers to investigate further which graphics-based approaches work best and
how to facilitate transfer.

ACM CCS 2012
Social and professional topics → Computer science education;

Keywords introductory programming, CS1, graphics, student engagement, transfer

The Art, Science, and Engineering of Programming

Submitted October 1, 2024

Published February 15, 2025

doi 10.22152/programming-journal.org/2025/10/14
© Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth
This work is licensed under a “CC BY 4.0” license
In The Art, Science, and Engineering of Programming, vol. 10, no. 1, 2025, article 14; 48 pages.

https://orcid.org/0000-0002-2712-9248
https://orcid.org/0009-0003-1727-1317
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0003-4694-9580
https://orcid.org/0000-0001-5527-5931
https://doi.org/10.22152/programming-journal.org/2025/10/14
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

1 Introduction

Computing teachers are always on the lookout for new ways to engage novice pro-
grammers. One popular strategy to promote engagement is to have students create
programs that produce fun graphics rather than dull textual outputs. Many program-
ming environments, software libraries, microworlds, and other tools have been built
to support these pedagogies (see, e.g., [32]). A well-established example is turtle
graphics [41], now available as a library for many programming languages and even
included in the standard library of languages popular for teaching such as Python.
Another prominent example is the media-computation pedagogy introduced by Guz-
dial [22], who designed a curriculum based on manipulating sounds and images in
order to teach computing concepts.

A number of studies have demonstrated that graphics-based pedagogies have posi-
tive effects on engagement [2, 23, 48, 53]. Something that has received comparatively
little attention is whether students generalize the concepts they learn in the do-
main of graphics into programming concepts and transfer them to programming
in other domains. Papert [40] argued that turtle graphics is an excellent vehicle to
teach mathematics, programming, and problem-solving in general. However, Pea
et al. [46] conducted studies with children using turtle graphics in Logo and did not
find the hoped transfer. Planning skills did not improve after a year of programming in
Logo [45]. And even for programming skills, the understanding of concepts depended
highly on the context. As an example: “a child who had written a procedure using
REPEAT which repeatedly printed her name on the screen did not recognize the
applicability of REPEAT in a program to draw a square.” [46]

Different approaches to graphics for introductory programming have been proposed,
including libraries that treat graphics as immutable values to be composed. To the
best of our knowledge, no study has been conducted to empirically evaluate which
approach best fosters transfer from programming using graphics to programming in
general.

Our study seeks insight into both engagement and conceptual transfer. We compare
two fundamentally different approaches to graphics: compositional graphics and
the well-established turtle graphics. As an example of the former approach, we use
PyTamaro, a graphics library designed for beginner programmers by some of the
authors. So far, the library has been only evaluated analytically, drawing on arguments
from theory, prior empirical findings in computing education, and anecdotal evidence
of PyTamaro itself [10].
We conduct a randomized, controlled experiment involving 145 participants. We

ask the following research questions:

RQ1 Is there a difference in conceptual transfer from a short programming tutorial with
a compositional graphics or a turtle graphics library to programming outside the
domain of graphics?

RQ2 After a tutorial following either approach, are there differences in how students
read or write programs?

14:2

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

RQ3 Do the two approaches lead to different levels of student engagement or perceived
learning?

2 Related Work

This section starts by exploring the multifaceted relationship between graphics and
programming education. We then review different approaches to program graphics,
comment on the few studies that empirically evaluate them, and argue why one
specific approach is worth investigating for transfer of specific programming concepts.

2.1 Graphics and Programming Education

There are multiple senses in which programming education can be related to graphics.
This section clarifies the scope of this work.

A fundamental separation exists between graphical and text-based programming.
Doing ‘graphical programming’ commonly means using a visual programming lan-
guage to create programs graphically, instead of textually. Scratch [33] is an example
of a visual programming language popular in educational contexts at the school level.
Scratch programs are composed of ‘blocks’ connected visually. The success of block-
based visual programming languages led to the creation of Blockly [44], a library
that facilitates the creation of other block-based languages. Scratch also inspired
the creation of Snap! [26], a block-based language in which users can define their
own blocks. Our work instead concerns text-based programming languages, which
university-level educational contexts use more frequently.

Even when written using text-based programming languages, programs can involve
‘the domain of graphics’ to different extents. For instance, a program can produce
‘static’ graphics (2D or 3D), ‘animated’ graphics, or ‘interactive’ graphics (known as
Graphical User Interfaces).

While creating interactive graphical programs has also been explored as a possibility
to learn programming (e.g., [17, 34]), our work focuses on approaches to create static
2D graphics, among which there is already considerable variety.

2.2 Graphics Libraries for Beginners

Chiodini et al. [10] identified three families of 2D graphics libraries designed for
teaching programming in a textual programming language: (1) canvas-based graphics;
(2) turtle graphics; and (3) compositional graphics. We briefly describe each below,
focusing on the latter two, which are directly relevant to the present study.

2.2.1 Canvas-Based Graphics
Libraries in this family draw graphics by placing elements on a canvas. Elements can
be freely positioned at locations defined by Cartesian coordinates relative to a global
origin. These programs are imperative in nature and heavily reliant on mutable state.
Learners frequently use ‘magic numbers’ that are not only hard-coded but that depend

14:3

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

on each other implicitly. Examples include Python’s cs1graphics [21], acm.graphics’s
derivative Portable Graphics Library [51] for Java, as well as Processing [49], which is
popular in the field of digital art.

2.2.2 Turtle Graphics
An alternative way to draw graphics is to control a ‘turtle’ that carries a ‘pen.’ [41]
The program on the right of Table 1 uses the turtle library that comes standard
with the Python language to draw (the black outline of) a house. This is a common
introductory example in turtle-based pedagogy [42].

Table 1 Drawing a house (adapted from Abelson et al. [1], originally from Papert et
al. [42]) with PyTamaro and turtle

Graphic PyTamaro Turtle

floor = rectangle(100, 100, yellow)
roof = triangle(100, 100, 60, red)
house = above(roof, floor)
show_graphic(house)

for _ in range(4):
forward(100)
right(90)

left(60)
for _ in range(3):

forward(100)
right(120)

In contrast to canvas-based libraries, there are no global coordinates. The perspective
is local, relative to the turtle. Papert argued that turtle geometry is learnable because
it is “body syntonic” [40]: the turtle’s perspective is the same as the learner’s. (We
note however that most turtle libraries allow some form of positioning using global
coordinates, partially going against the principle of body syntonicity.)
One of the goals of turtle graphics is to create abstractions that work as “building

blocks” [1, 24]. From the program on the right in Table 1, it would be straightforward
to grab a few lines as written and define, say, a procedure that draws a roof wherever
the turtle happens to be. However, like canvas-based programs, this program also
relies on mutable state: the command forward(100), for example, depends on the
turtle’s current heading and position, and mutates the latter. Together, the turtle’s
position, heading, and pen status (up/down and color) constitute a global state that
persists across procedures and that the programmer must attend to [10, 24].

The left(60) call in the Turtle code of Table 1 is a basic example of what Abelson
et al. [1] termed “interface steps”: additional code that modifies the global state in
order to ‘glue together’ the solutions to subproblems. In this simple program, the
subproblems are the single floor and the roof, and one needs an interface step to
rotate the turtle in preparation for drawing the roof. Interface steps are a burden for
the (beginner) programmer [24].

2.2.3 Compositional Graphics
A different approach for programming graphics was first proposed by Henderson [27]
and later advanced by Finne et al. [20]. It is particularly popular among those who

14:4

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

embrace functional programming; this is reflected in programming languages (such
as Pyret [56]), libraries (such as Racket’s image teachpack [3, 19]), and curricula
(such as How to Design Programs [18]), which support and encourage this approach.

PyTamaro is a recent entry in this space, enabling beginners to do compositional
graphics in Python. The program on the left of Table 1 shows how to draw the house
with PyTamaro. The most striking difference to both canvas- and turtle-based programs
is that this program treats graphics as values to be composed. Like the other libraries
in this family, PyTamaro provides functions for creating basic shapes (e.g., rectangle)
and for combining graphics (e.g., above). Another key difference is that the graphical
values are immutable: one may compose them but not change them.

From this program, it would be easy to abstract a function that creates a roof: the
solutions to the floor and roof subproblems are independent (apart from the width
of the house, if one wishes to keep the floor and the roof at the same width). Those
sub-solutions are explicitly combined (using above) to form a solution to the overall
problem. There are no interface steps in the sense described above.
The PyTamaro program in Table 1 does not contain coordinates, and indeed the

library features no global coordinate system. In fact, PyTamaro does not feature even
local coordinates—e.g., coordinates relative to the top-left corner of a graphic—and
differs in this from most libraries in the compositional graphics family. This is a facet
of the library’s minimalist design, which intentionally provides only a small number
of features chosen to support conceptual learning.

2.3 Evaluations of Graphics-Based Approaches — And the Challenge of Transfer

Multiple studies report positive effects on student engagement from graphics-based
pedagogies such as media computation [23, 48, 53] and turtle graphics [2]. After
having accumulated a decade of experiences with media computation curricula,
Guzdial [23] summarized their observations on their impact. The highlights of these
findings include gains in student engagement, which led to a drastic reduction in
failure rates (from 50% to under 15%). Moreover, female participation in the courses
increased, stabilizing above 40%.

A few studies have found evidence of transfer from graphics-based programming to
mathematics. Noss [39] carried out an experiment showing that Logo helped to learn
certain geometrical concepts. Schanzer et al. [52] presented initial data that show a
measurable transfer of skills from a ‘functional’ programming curriculum (which also
includes compositional graphics) to algebra when instructional materials are carefully
aligned to the concepts normally covered in math classes.
Empirical evidence remains scarce on whether programming with graphics helps

with general programming skills. Already in the 1980s, Pea et al. [46] looked into claims
that Logo (and its turtle graphics) helps with problem-solving in general but found
little evidence in support; moreover, they found that after 30 hours of programming
with Logo, “children’s grasp of fundamental programming concepts such as variables,
tests, and recursion ... was highly context-specific” [46], thus illustrating how difficult
it is for learners to transfer their knowledge from a particular context or domain to
others. More recently, Guzdial explored what they called the “learning hypothesis”

14:5

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

of their media computation curricula, but the results were inconclusive or negative
compared to a traditional curriculum [23].

2.4 Compositional Graphics Approaches Should Have Potential for Conceptual Transfer

Chiodini et al. [10] identified several trade-offs in graphics-library design for novices
and argued that a compositional graphics library like PyTamaro can be a meaningful
alternative to comparable libraries, under the right circumstances and given certain
pedagogical goals.
As noted above, PyTamaro is designed to assist in the acquisition of fundamental

programming concepts. For instance, few language constructs are needed for writing
PyTamaro programs (e.g., no classes and objects), the API is minimal (e.g., no func-
tions for loading external images), and neither mutable state nor coordinate-based
operations are present. That is, PyTamaro has deliberate limitations: learners are not
given access to certain functionality. This design should help manage complexity for
beginner programmers, guide them towards better-quality programs, and nevertheless
engage them meaningfully not only with graphics but with key computing content
that is not specific to the graphics domain. In other words, PyTamaro is claimed to
hold the potential for improved transfer.
The decomposition of problems into independent subproblems is key not only to

professional programming [38, 43, 54] but broadly to computational thinking [58]
and problem-solving [4]. However, learning decomposition and, relatedly, abstraction
is hard [29, 37]. Several of PyTamaro’s intended benefits involve these key concepts
and skills. Mutable state and ‘interface steps’ (Section 2.2.2) in turtle graphics hinder
effective problem decomposition. State makes it harder to reason about a subproblem
in isolation: to understand what is the effect of a given piece of code, novices have
to mentally reconstruct the state of the turtle. Lewis [31] documented how both
school- and college-level students struggle with the turtle’s state, leading to issues
that are hard to debug. Compositional graphics approaches like PyTamaro eliminate
this problem by offering only pure functions that produce immutable graphics.

Treating graphics as values to be composed also facilitates visual decomposition [10].
One may look at an image and identify its components (e.g., the roof and floor in our
trivial example), and see how those visual components compose into an overall image;
this maps directly to how the subproblems’ programmatic solutions compose into an
overall program. Learners may be guided to visually decompose graphics and thereby
learn how to decompose programming problems and to compose the subprograms
that solve them. Visual decomposition is relatively straightforward when objects are
immutable and one does not need to consider components’ locations as coordinates.
In the present work, we seek empirical evidence of the possible better transfer

to programming in other domains when learning using a compositional graphics
approach. We use the well-established and popular turtle graphics approach as a point
of comparison.

14:6

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

3 Methodology

3.1 Procedure

We designed a randomized, between-subjects experiment with two conditions. In
both conditions, the participants worked through a programming tutorial consisting
of four ‘mini-lessons’ with a Python graphics library. We selected PyTamaro in its
English API version as an example of a compositional graphics library (Section 2.2.3)
and turtle from Python’s standard library for turtle graphics (Section 2.2.2).

Since the study took place in a proctored computer laboratory and the participant
count was high, we arranged four identical sessions over two weekdays. Each session
consisted of four phases (Figure 1): a pre-survey, a teaching intervention phase, a post-
survey, and a post-test. The teaching intervention was different for the two groups,
as was part of the post-test (as explained below); the other phases were identical
for both. We allowed participants a maximum of 90 minutes to complete the entire
session.

Figure 1 The timeline of each session

Although some of the authors oversaw the sessions, they did not directly teach
anything to either group. Instead, the intervention took the form of a self-paced
tutorial on a sequence of web pages. This decision was made in an effort to increase
the reproducibility of our findings and to eliminate biases in favor of our own library,
PyTamaro.

No Pre-Test? By design, our experimental setup did not include a pre-test. This means
we cannot compute learning gains, but the decision can nevertheless be justified both
methodologically and pragmatically.
First, the differences between the two groups are ironed out because we assigned

the large number of participants to the two conditions randomly. This follows the
recommendations of Campbell and Stanley: “While the pretest is a concept deeply
embedded in [researchers’] thinking ... it is not actually essential to true experimental
designs. ... the most adequate all-purpose assurance of lack of initial biases between
groups is randomization” [5].

Second, a pre-test on programming could have brought about learning and muddled
our results. There is evidence that just taking a test again leads to better learning
outcomes [6]. We wanted to avoid that and instead study the effect of the teaching
intervention with a compositional graphics library like PyTamaro, checking for transfer
using the Turtle group as a baseline.

14:7

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Third, the time constraints given by the context forced us to consider whether to
have a pre-test or a longer teaching intervention. We decided to dedicate a greater
fraction of the limited time of the experiment to the intervention.

3.2 Context and Participants

We recruited participants from an introductory programming course (CS1) at a large
European research university that is not where PyTamaro originated and where
PyTamaro had never been used before. The course is held during the first semester of
undergraduate studies and targets non-majors in CS, especially students from other
engineering fields. The course uses Python and adopts what might be described as a
‘typical imperative programming pedagogy’; it does not feature any graphics-based
programming.

None of the present authors are involved in teaching the course. The sessions took
place during the third week of the course, outside class hours. During the first two
weeks, the course had covered variables, basic I/O, assignment statements, simple
arithmetic, and if and while statements; for loops were introduced in the third
week. We organized the study very early in the course to limit prior programming
knowledge. We ruled out the possibility of running the study even before the course
start date: besides our participants having yet to begin their university path, it would
have been unfeasible to cover meaningful content in a short teaching intervention
with absolute beginners.

We advertised the study during the introductory lecture of the course. Participation
was voluntary. Upon completion (but irrespective of performance), the participants
were rewarded with a minor amount of course credit and a movie ticket.

A web platform provided all the materials and assessments and took care of ran-
domization and data collection in accordance with the local anonymization policies.
Each participant consented to the use of their anonymous data.

3.3 Pre-Survey

The participants answered a pre-survey with questions on three areas. First, we asked
standard demographic questions. Second, we gauged their prior knowledge asking how
many lines of code they had written before and whether they had ever programmed
graphics. Third, we surveyed their attitude towards programming with three Likert
items. The full questions are available in Appendix A.

3.4 Teaching Intervention

The teaching intervention for each group consisted of four ‘mini-lessons.’ Each such
lesson took the form of a web page and consisted of text, executable snippets of Python
code, and a few illustrations. Some of the snippets were ready to execute as-is, but
the majority offered only a starting point for the participants to write their own code
as instructed.

14:8

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

3.4.1 Interplay Between Pedagogy and Library
The lessons were designed purposely for this experiment. We tried to align the ma-
terials for the two conditions closely, while still adopting a meaningful use of each
library. This was difficult, as there is an interplay between the tools one chooses and
the pedagogy one may then adopt; each library is associated with a ‘typical’ pedagogy
that tries to match its strengths and minimize its weaknesses.
At one extreme, a library might make a concept inaccessible because there is no

support for it. For example, when graphics are not treated as values and functions
are essentially procedures, as in turtle graphics, it is impossible to construct nested
calls or other composite expressions with graphical values. At the other extreme, a
library might make it practically mandatory to teach a certain concept. PyTamaro
has, in common use, a parameterless function (empty_graphic) and various non-
commutative functions that take two parameters (e.g., above), effectively forcing
learners to deal with these concepts.

Somewhere in the middle of the spectrum, a library may nudge pedagogy towards
certain concepts that are particularly compatible with it; for example, PyTamaro does
not mandate exploiting associativity and multiple ways to decompose a particular
problem, but it invites teachers and learners to explore these topics. Conversely, a
library and its standard pedagogies may not particularly need a concept, but the
concept may still be introduced despite not being prominent.

We sought a balance within these constraints to keep the experiment fair, especially
avoiding favoring PyTamaro.

3.4.2 Lessons’ Content
The lessons focused on using variables and functions, and on composition in general.
Broadly, they emphasized expressions, an essential concept even in non-predominantly
functional languages such as Python, but that is often neglected by traditional imper-
ative pegagogies [9] like the one adopted in our CS1 course.
PyTamaro’s approach is compositional and exploits expressions. It thus offers the

right opportunities to explain these concepts, which were only briefly introduced in
the first part of the CS1 course that took place before the experiment.
For both groups, we created materials in two natural language versions: one in

English, another in Finnish. Each participant was free to choose whichever of the
two; 39% used the English version. The identifiers in Python code were identical (in
English) in both language versions.
The first lesson introduced the idea of a software library and showed how to call

library functions. For PyTamaro, functions’ parameters and return values were visual-
ized with a ‘plumbing diagram’ similar to Harvey [25, Ch. 2]. For Turtle, animated
GIFs showed how the turtle executes a sequence of commands including movements
and rotations.
The second lesson guided both groups toward drawing something slightly more

interesting: the house from Table 1. The CS1 course had not yet covered function
definitions, whose introduction from scratch would have required too much time. We
opted to provide both groups with functions such as square and triangle and focus
on their usage.

14:9

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

The third lesson explained how to draw a more complex graphic with two houses
and a wall in between, to whet the learners’ appetite for constructs that repeat compu-
tations. The PyTamaro group practiced combining variables and nesting, whereas the
Turtle group focused on the importance of the order in the sequence of commands.

The fourth and final lesson introduced repeated computation with for loops, which
students had just started practicing in the CS1 course. Both groups drew a ‘street’ of
five houses side by side: the PyTamaro group used the parameterless empty_graphic
function to initialize an ‘accumulator’ variable (cf. zero in summation), the Turtle
group added an ‘interface step’ to reposition the turtle at the end of each iteration.

Here we only briefly outlined the contents of the lessons. The complete version for
both groups is available in Appendix B.

3.5 Post-Survey

Immediately after the teaching intervention, we asked the participants to complete
another survey. This was to explore RQ3 by eliciting their opinions on the lessons
they just experienced, their level of engagement with programming in the domain of
graphics, and whether they had actually perceived to be learning programming.
We formulated four hypotheses for engagement and three for perceived learning.

The independent variables are (separately) the approach followed and the gender.
On engagement. There is a difference in...

H3a ... how interesting they think the tutorial was.
H3b ... how fun they find programming graphics.
H3c ... how much more they like programming graphics over programming in other

domains.
H3d ... how much they would like to learn more with graphics.
On perceived learning. There is a difference in...

H3e ... how much they feel they have learned about programming.
H3f ... how much they feel they already knew that approach to program graphics.
H3g ... how much they feel they already knew the programming concepts taught.
Each hypothesis corresponds to a seven-point Likert item in the post-test, answerable

from “not at all true” to “completely true” (Table 8). The exact items as presented to
the participants are shown in full in Appendix C.

3.6 Post-Test

In total, our post-test had nine questions whose themes are listed in Table 2. The
post-test can be logically divided into two parts (even though this division was not
visible to the participants).

The first part was identical for both groups. It consisted of six multiple-choice
questions that relate to general programming concepts and RQ1, whose associate
hypothesis is the following:

14:10

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Table 2 The themes of our post-test questions (Q1 to Q9) and how they map to the
hypotheses derived from our first two research questions

H Post-Test Topic / Task

H1

Q1 Use a variable more than once in an expression.
Q2 Nest function calls.
Q3 Use a function with more than one parameter.
Q4 Call a parameterless function.
Q5 Exploit an associative operation for multiple solutions.
Q6 Determine the initial value of a loop’s accumulator variable.

H2a Q7 Tracing: Given a program, determine the size of the result.
H2b Q8 Writing: Create a program to draw a simple graphic.
H2c Q9 Modifying: Modify a given program that draws a graphic.

H1 There is a difference in conceptual transfer between the group that followed a
programming tutorial with PyTamaro or with Turtle, as measured on programming
tasks outside the domain of graphics.

We operationalize transfer as participants correctly answering the six multiple-
choice questions.

The second part of the post-test relates to our second research question, from which
we formulate three specific hypotheses:

After following a programming tutorial with PyTamaro or with Turtle, there is a
difference in how learners...
H2a ... trace an existing program that creates a graphic.
H2b ... write a program from scratch to create a graphic.
H2c ... modify a given program that creates a graphic to adapt to new requirements.

3.6.1 Q1 to Q6: Multiple-Choice Questions on Programming
The first six questions, Q1 to Q6, were multiple-choice questions unrelated to graphics.
The questions targeted expression-related programming concepts (function calls,
variable use, composition with operators or nesting) where the PyTamaro approach
could yield better transfer, given that these concepts were only explicitly practiced in
PyTamaro’s teaching intervention. The Turtle group thus served as a baseline with
respect to these questions: the Turtle participants had to answer these questions on
the basis of whatever they had learned (or failed to learn) prior to the experiment.
Table 3 shows the alignment between the six multiple-choice questions and the

examples featured in the teaching materials for the PyTamaro group. In the learning
sciences literature, these are known as isomorphic tasks (or simply as isomorphs). We
will comment further on transfer and its challenges in the Discussion (Section 5.3).

The table only summarizes the stems. For completeness and reproducibility, the
questions with answer options appear in full in Appendix D.

14:11

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Table 3 Each multiple-choice question targeted an abstract concept that should be learned
in the teaching intervention phase for the PyTamaro group and then transferred
to an isomorphic task in the testing phase (Figure 2). For compactness, the tasks
from the intervention (left) and the questions (right) are summarized here as
single sentences. The full questions and answers can be found in Appendix D.)

Abstract Concept
Teaching Intervention with PyTamaro Post-Test (Both Groups)

Q1: The same variable can be used more than once in an expression.
beside(house, house) is valid is print(word + word + word) valid?

Q2: Function calls can be nested.
rotate(45,

rectangle(200, 100, green)
) is valid

is sqrt(
sqrt(16)

) valid?

Q3: A function can have multiple parameters and their order matters.
above(ground_floor, roof)
is valid and different from
above(roof, ground_floor)

is subtract(10, 7)
valid and different from

subtract(7, 10)?

Q4: A function can have zero parameters and calling it still requires parentheses.
empty_graphic() is valid is fake_random() valid?

Q5: Multiple valid decompositions: if ⊗ is associative, a⊗ (b⊗ c)≡ (a⊗ b)⊗ c.
beside(house,

beside(wall, house))
is equivalent to
beside(beside(house, wall),

house)

is combine("re",
combine("stau", "rant"))

equivalent to
combine(combine("re", "stau"),

"rant") ?

Q6: The initial value of a loop’s accumulator variable is the operation’s neutral element.
when combining graphics,
initialize result to empty_graphic()

when multiplying numbers,
should result be initialized to 1?

3.6.2 Q7 to Q9: Programming Tasks in the Graphics Domain
Unlike the questions on general concepts described above, the other three post-
test questions could not be identical for the two groups, as the questions involve
programming graphics and the two groups learned different approaches for that.
We strove for tasks that are as close to each other as possible and yet respect the
idiosyncrasies of each approach. Nevertheless, as the two groups’ programs are not
identical, this part of our results speaks not only of what the participants learned
during the intervention but also of the characteristics of ‘typical’ code written using
the two approaches to program graphics.
Below, we consider each of the hypotheses related to RQ2 in turn.

3.6.3 Tracing (H2a)
Question 7 asked participants to trace a program that draws four squares in a two-by-
two grid, as shown in Table 4. The participants were prompted for the dimensions of

14:12

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

the resulting drawing. An answer is considered correct only when both dimensions
are correct.
This question checks for differences in how well participants can trace a program

(hypothesis H2a).

Table 4 Q7: What are the width and height of the resulting drawing?

PyTamaro Turtle

a = square(10, black)
b = square(10, black)
c = above(a, b)
d = square(10, black)
e = square(10, black)
f = above(d, e)
g = beside(c, f)
show_graphic(g)

pencolor("black")
square(10)
left(90)
forward(10)
right(90)
square(10)
forward(10)
square(10)
right(90)
forward(10)
left(90)
square(10)

3.6.4 Writing (H2b)
Question 8 was designed to address the second hypothesis related to RQ2: are there
differences between the two approaches when learners write a program from scratch?
The participants were asked to write a Python program to draw the simple graphic in
Table 5. The PyTamaro group were expected to create a hammer’s head and handle
with the rectangle function, to compose them together, and to rotate the composite
graphic. The Turtle group were expected to use a combination of movements and
rotations to draw a colored letter T.

Table 5 Q8: Write a program to draw the given graphic. (One correct answer is shown for
each group.)

PyTamaro Turtle

head = rectangle(120, 30, black)
handle = rectangle(40, 200, red)
hammer = above(head, handle)
rotated_hammer = rotate(45,

,→ hammer)
show_graphic(rotated_hammer)

pencolor("red")
forward(200)
backward(100)
right(90)
pencolor("black")
forward(250)

14:13

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

3.6.5 Modifying (H2c)
Question 9 gave the participants a program that places five identical houses (like the
one in Table 1) next to each other with a for loop. This program was the same as the
one featured in the fourth mini-lesson.

Table 6 Q9: The participants were asked to double the dimensions of the houses.

PyTamaro Turtle

ground_floor = square(100, yellow)
roof = triangle(100, 100, 60, red)
house = above(roof, ground_floor)
n_houses = 5
street = empty_graphic()
for i in range(n_houses):

street = beside(street, house)
show_graphic(street)

n_houses = 5
for i in range(n_houses):

pencolor("yellow")
square(100)
pencolor("red")
left(60)
triangle(100)
right(60)
forward(100)

Successfully modifying the PyTamaro program requires identifying the code that
deals with the create-a-house subproblem, and updating the relevant arguments given
to square and triangle. In contrast, modifying the Turtle program also requires the
participant to position the turtle correctly before each loop iteration (e.g., editing the
call to forward). A difference in the success ratio on this task between the groups
would validate hypothesis H2c.

This task is meant to challenge the participants on a small scale with issues of
maintainability. The turtle approach inherently has one additional challenge because
the solutions to the subproblems, such as drawing a single house, cannot be composed
independently of their specifics (the width of one house).

3.7 Analysis

Our study is mostly quantitative. We ran a power test to compute an appropriate
minimal sample size, seeking to keep false positives under 5% (α= 0.05) and false
negatives under 20% (β = 0.2). We speculated on a “medium” effect size (d = 0.5) in
either direction (two-tailed test). These constraints yielded a minimal sample size of
64 participants per group (cf. Table 2.4.1 in [12]); our participant count (145) exceeds
this minimum.

We use parametric tests, trusting the Central Limit Theorem to guarantee normality
on our large sample. We do not make assumptions about the direction of effects, or on
the equality of variances. We therefore compare means with two-tailed, independent-
samples t-tests without the equal-variance assumption—a.k.a. Welch’s t-tests.

Following widespread recommendations [55, 57], we report each p-value together
with an effect size (Cohen’s d). Instead of performing corrections for multiple com-
parisons and then making claims of statistical significance, we consider p-values and
effect sizes together in an attempt to interpret our results’ real-world significance [55].

14:14

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Below, we will note where a p-value is under the traditional threshold for signifi-
cance α = 0.05 or where an effect size is at least “small” (d ≥ 0.20 as suggested by
Cohen [11]).

Some of the questions in our pre- and post-surveys were on a seven-point Likert
scale. We treat the responses to these questions as interval data, while acknowledging
that there is no universal consensus on whether it is acceptable to do so [30]. (We
adopted a seven-point scale, as simulations show that using more points brings the
distribution closer to normal [59].) We thus use the parametric t-test for Likert items;
the non-parametric Mann–Whitney–Wilcoxon test would also be appropriate, but it
has been shown that the two tests have similar power for almost all distributions [15].
To complement our inferential statistics, we conducted semi-formal analyses of

certain student responses (e.g., types of programming errors made), as described
below under Results.

4 Results

As noted above, data was collected from four sessions spread over two weekdays. The
sessions had 38, 39, 36, and 32 participants, respectively, for a total of 145 participants.
The web platform we used automatically assigned participants to groups with equal
probability. We ended up with 70 participants in the PyTamaro group and 75 in the
Turtle group.

The PyTamaro group spent an average of 47 minutes on the whole session, which is
somewhat longer than the Turtle group’s 42 (d = 0.38, p = 0.02). We hypothesized
that this might be due to some participants’ prior exposure to programming with
turtle graphics (Section 4.1), so we separately checked only those participants who
had never programmed any graphics before; this reduced the difference to roughly
three minutes (47 vs. 44; d = 0.26, p = 0.19).

4.1 Pre-Survey

The participants had an average age of 22 years (standard deviation 5.0). 71 partici-
pants (49%) identified as female, 70 (48%) as male, 0 as non-binary, 2 as other, and
the remaining 2 preferred not to disclose gender information.
The vast majority of participants (120, 83%) reported to have completed the first

three rounds of exercises in the CS1 course they were taking. Pre-CS1 experience
with programming was uncommon, with some exceptions.

65 participants (45%) reported having written 0 lines of code before CS1 (excluding
any HTML and CSS). 33 (23%) reported fewer than 50 lines in total, 33 (23%) fewer
than 500, 11 (8%) fewer than 5 000, and 3 (2%) over 5 000. When asked whether they
had ever written a program that draws graphics, 104 (72%) participants answered
no, 29 (20%) yes, and the remaining 12 (8%) were not sure. (We did not directly
ask the students which tools they used for programming with graphics, but given the
setting, we expect that Scratch is at the top of the list, and that some would also have
done turtle graphics; the compositional graphics approach is likely to be very rare.)

14:15

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Below, we use the term novice for participants who both had written fewer than
500 lines of code and had never programmed graphics before. By this measure,
107 participants (74%) were novices; they ended up evenly split across the two
groups, with 53 novices assigned to PyTamaro and 54 to Turtle.
As expected, given the large sample and randomization, there was no significant

difference in self-reported prior programming knowledge between the groups (“lines
of code written” on a scale between 0 and 4; p = 0.59, d = −0.08).

The participants generally expressed positive attitudes to programming. On a scale
from 1 to 7, they strongly agreed that “it is useful for me to know programming,”
with an average rating of 6.21(±0.84). Moreover, they moderately agreed that “pro-
gramming is fun” (5.34 ± 1.36) and did not agree that “programming is boring”
(2.25± 1.27).

4.2 Transfer to Programming Concepts (H1)

We rated the answers to the six multiple-choice questions, Q1 to Q6, as either incorrect
(including “I don’t know”) or correct. Table 7 shows the results as percentages of
correct answers for each question.

Table 7 Proportions of correct answers on Q1 to Q6, shown first for all participants and
then for novices only

Q1 Q2 Q3 Q4 Q5 Q6

A
ll

PyTamaro% (N = 70) 82.9% 80.0% 97.1% 57.1% 94.3% 68.6%
Turtle% (N = 75) 81.3% 78.7% 93.3% 58.7% 90.7% 73.3%
Delta% 1.5% 1.3% 3.8% -1.5% 3.6% -4.8%
p-value 0.81 0.84 0.29 0.85 0.41 0.53
Effect size 0.04 0.03 0.18 -0.03 0.14 -0.10

N
ov

ic
es

PyTamaro% (N = 53) 79.2% 81.1% 96.2% 56.6% 92.5% 60.4%
Turtle% (N = 54) 81.5% 74.1% 94.4% 51.9% 90.7% 70.4%
Delta% -2.2% 7.1% 1.8% 4.8% 1.7% -10.0%
p-value 0.77 0.39 0.67 0.63 0.75 0.28
Effect size -0.06 0.17 0.08 0.09 0.06 -0.21

Overall, the participants fared decently well on these questions, which targeted basic
expression-related programming concepts: average correctness across questions and
groups was 80%. Q3 (multi-parameter functions) and Q5 (equivalence of associative
solutions) were solved correctly by more than 90% of participants. Q4 (calling a
parameterless function) and Q6 (initialize a variable for a loop) proved to be the
hardest, with aggregate averages of 58% and 71%, respectively.
The differences are negligible on all six questions. Only three questions meet the

very low bar of 0.10 for effect size: Q3 and Q5 in favor of PyTamaro and Q6 in favor
of Turtle. None of these differences are statistically significant.
As shown in the bottom half of the table, we also looked separately into novice

performance. Again, we found no major differences. The only effect size to pass the

14:16

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

“small effect” threshold was −0.21 in favor of Turtle on Q6, and none of these results
are statistically significant either.
We checked for a correlation between the time participants spent on the post-test

and their performance on the multiple-choice questions. However, this correlation
was effectively zero: r2 = 0.02.

4.3 Programming Tasks (H2)

The last three questions in the post-test targeted the three facets of RQ2. We present
the results for each related hypothesis in turn in the next subsections.

4.3.1 Tracing (H2a)
In the PyTamaro group, 90 % of the participants answered their tracing task correctly,
whereas only 37 % of the participants in the Turtle group correctly answered their
‘comparable’ task. The difference is statistically significant (p < 0.001), and the effect
size is very large (d = 1.29).

We also looked at novices separately and found a similar trend. 89% of PyTamaro
novices answered correctly, compared to only 33 % for Turtle. Again, the difference
was statistically significant (p < 0.001) and the effect size large (d = 1.36).

4.3.2 Writing (H2b)
Both groups performed rather well on this task. 59 out of 70 (84 %) in the PyTamaro
group solved the task correctly (i.e., the program does what was asked), as did 63 of
75 (84%) in the Turtle group. Looking to understand the student programs in more
detail, we semi-formally analyzed the incorrect answers.

The eleven incorrect answers in the PyTamaro group can be characterized as follows.
Three participants did not submit a solution; two tried to rotate the individual graphics
before composing them (which leads to issues related to the bounding box); one
supplied rotate’s arguments in the wrong order; one rotated the hammer in the
wrong direction; one had a typographical error; and three had a mix of other issues.

The turtle group had twelve incorrect answers: four participants mixed rotation
(e.g., left) with movement (e.g., forward); two drew the letter ‘upside down’; two
used wrong lengths; one colored the entire drawing in red; one used strings where
integers were called for (e.g., "250"); one drew an extra line; and one issue we were
unable to classify.

4.3.3 Modifying (H2c)
On this question, too, both groups performed rather well. 56 out of 70 (80%) in the
PyTamaro group solved the task correctly, and in the Turtle group the number was
even higher: 66 of 75 (88%). The difference is not statistically significant (p = 0.15),
and the effect size is small (d = −0.25).
In the PyTamaro group, several participants changed numbers incorrectly in at

least one place. In three cases, triangle’s angle argument was also doubled; in one
case only the floor was updated, and in one other case only the roof; one participant
multiplied numbers by 1.5 instead of 2; three other participants otherwise altered

14:17

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

the numbers incorrectly; and one tried to inject an extra instruction in the loop body.
Four participants did not submit a solution.
In the Turtle group, we expected to see several failures to update forward’s argu-

ment (as described in Section 3.6.5 above). However, of the nine incorrect solutions,
only two were in this category. The other wrong solutions were either not submitted
(four cases), had incorrect numerical arguments (two), or inadvertently redefined the
name square (one).

4.4 Engagement and Perceived Learning (H3)

Table 8 summarizes the post-survey results, first comparing the groups and then
looking at possible gender differences. Each claim, in order, tests the corresponding
hypothesis (H3a to H3g).

Table 8 Post-survey results divided by experimental group (left) and gender (right)

Claim (Likert scale from 1 to 7) PyT. Tur. p d Fem. Male p d

Engagement:
I found the preceding lessons inter-
esting

6.06 6.00 0.74 0.06 6.08 5.95 0.46 0.13

Programming with graphics is fun 6.01 5.83 0.33 0.17 5.97 5.86 0.56 0.10
I like programming with graphics
more than the text-based program-
ming we have done in the course

4.44 4.56 0.66 -0.08 4.73 4.29 0.11 0.30

I would like to learn more about
programming with graphics

6.09 5.87 0.16 0.24 5.97 6.00 0.85 -0.03

Perceived learning:
I feel that I learned about program-
ming concepts from these lessons

6.07 5.64 0.03 0.36 5.82 5.85 0.88 -0.03

I already knew beforehand how to
do graphical programming similar
to what was taught

1.64 2.29 0.02 -0.39 2.03 1.88 0.60 0.09

I already knew beforehand all the
general programming content

5.26 5.33 0.83 -0.04 5.29 5.28 0.96 -0.01

Overall, the participants liked the activities and found them useful for learning.
PyTamaro users were more inclined to say that they “had learned about programming
concepts from the lessons” (d = 0.36, p < 0.03). As expected, PyTamaro’s compo-
sitional graphics approach was less familiar to the average participant than Turtle
(d = −0.39, p < 0.02). Moreover, we observed small effects in favor of PyTamaro with
respect to how much participants now enjoyed programming with graphics (d = 0.17)
and their desire to continue with graphics-based programming (d = 0.24).

Differences between female and male students were minimal, with one exception.
The participants’ CS1 course relies on traditional programs with text-based console
I/O. After the intervention, female participants were more likely to say that they like
programming with graphics more than what they have done in CS1 (small-to-medium
effect, d = 0.30).

14:18

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Participants across groups largely agreed that “programming with graphics is fun”
(average 5.9). This item is not identical to our more generic “programming is fun”
item on the pre-test (average 5.4). With that caveat in mind, we note that there is
a statistically significant difference between these within-subjects ratings, with a
moderate effect size (d = 0.46, p < 0.001).

5 Discussion

In summary, we found that (1) both graphics-based approaches—compositional and
turtle—engaged students and led to high ratings of perceived learning; (2) both
groups performed uniformly well on the programming tasks in the post-test, except
for a substantial difference in code tracing; and (3) the groups performed equally on
post-test questions on conceptual knowledge. Sections 5.1 and 5.2 below elaborate on
the first two points, respectively. In Section 5.3, we discuss the third point in detail
as we consider both the factors that may have affected our specific result and, more
broadly, the methodological issues that complicate studies such as ours.

5.1 Student Engagement Was High

Both the PyTamaro group and the Turtle group reported high levels of engagement
with programming using graphics. They expressed enthusiasm for it, thought it was
more likable than traditional non-graphics-based programming, and felt that they
had learned programming concepts by engaging with it (Section 4.4). Our study thus
adds to the body of evidence (Section 2) on the value of graphics in introductory
programming education. Moreover, PyTamaro’s compositional graphics approach
appears to yield engagement levels at least on par with the venerable and widely
popular turtle approach.

Learner diversity is one of the motivations to introduce graphics in CS1, and peda-
gogies such as media computation have had positive effects on gender balance [22,
23]. Engaging and retaining diverse students is also an explicit goal for PyTamaro,
and two of our results are potentially significant in this light. First, almost half (49%)
of the volunteering participants identified as female, which is substantially higher
than the proportion of female students in the CS1 course (ca. 35%). We had ad-
vertised the study as “learning to program graphics in Python,” which may have
piqued female students’ interest in particular. (It is known that there are differences in
how female and male students value different domains in programming tasks [35].)
Second, female participants especially agreed with the post-survey claim that they
prefer programming with graphics to text-based programming (average 4.7 vs. male
students’ 4.3). This effect was of a small-to-moderate size but did not reach statistical
significance (d = 0.30, p = 0.11). Our experiment was not designed to provide data
on long-term impact, but our results do suggest that choosing graphics as a domain
for introductory programming may have an immediate impact on stimulating female
students’ interest.

14:19

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

5.2 Differences Between Groups Were Scarce, With One Exception

Overall, the two experimental groups showed comparable results on the post-test
tasks. We start the discussion with the notable exception of the performance difference
on the tracing task, which tested hypothesis H2a.

5.2.1 The PyTamaro Group Did Better on Their Tracing Task
One of the goals of compositional graphics approaches is to encourage decomposing a
problem into independent subproblems so that one may reason about each subproblem
in isolation. This is harder to achieve with turtle graphics, as the turtle carries a state
that includes its position and heading [10]. Tracing a turtle program requires one to
track the state at each step through a sequence of commands.

While designing the tracing question (Section 3.6.3), we considered several aspects
in an attempt to ensure a fair comparison. First, both groups used a square function
they had already practiced during the intervention. Second, the square function we
gave the Turtle group ‘behaves nicely’: it leaves the turtle facing in the same direction.
Third, the PyTamaro code is suboptimal in several ways, compared to the code quality
one would typically have with PyTamaro. (Specifically: Each variable is used only
once. The square function is called four times merely to match the four calls in the
Turtle program. Similarly, repetition of the first three lines could have been avoided
by reusing c. The side length is not given a meaningful name; the literal 10 is passed
directly as an argument. All the variable names are devoid of meaning.)

Our participants performed vastly better on the PyTamaro tracing task than on the
Turtle task. This result comes with caveats. For one thing, there was only one tracing
question for each participant. For another, the two groups traced different programs.
Although we have argued that the two programs are, in a sense, comparable, our
reasoning may be called into question. Nevertheless, the very large effect size in
favor of PyTamaro (Section 4.3.1) suggests that tracing typical turtle graphics code
requires more effort and care compared to typical compositional graphics code, even
for non-novices. It is important to bear in mind that this finding speaks partially—and
perhaps mainly—of the nature of the two programs and their associated learning
approaches rather than between-group differences in learning gains; however, that
finding, too, is relevant to instructors that employ graphics-based pedagogies.

5.2.2 Other Differences Were Largely Absent
We found no major differences between the groups on the code-writing task or the
code-modifying task (Sections 4.3.2 and 4.3.3). By and large, both groups performed
rather well on these tasks. Despite this result, the possibility certainly remains that the
two approaches to programming graphics lead to differences in students’ programming
skills. However, it may be that observing such differences would require a context
where learners practice with a graphics library longer (e.g., over several weeks) and
can then demonstrate their abilities on significantly larger exercises. For us, arranging
for such an experiment was not feasible in practice; it would have also reduced the
degree of control over the study participants, likely introducing new confounding
factors.

14:20

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Similarly, we observed no substantial differences between the groups’ performance
on the six post-test questions about expression-related programming concepts (Sec-
tion 4.2). Again, the short length of the intervention may have contributed, but there
are many other factors worth considering as well, as we discuss below.

5.3 Question Design and Conceptual Transfer

Certain programming concepts are prominent in the compositional graphics approach
that PyTamaro supports; these include nested function calls and other composite
expressions, functions that take various numbers of parameters, and return values,
to list a few. In the absence of a validated assessment instrument that focuses on
these concepts, we designed an ad hoc one: questions Q1 to Q6 in our post-test
(Appendix D). We applied this instrument in hopes of showing conceptual transfer
from PyTamaro to a non-graphical domain (using turtle graphics as a baseline) but
did not find evidence of it.
When designing and applying such an instrument, there are many decisions to

be made. Below, we discuss a few of them in order to explain our design, reflect on
possible reasons for the lack of observed differences between groups, and, perhaps, to
highlight some pitfalls to others engaged in evaluative computing education research.

5.3.1 Staying Clear From ‘Teaching to the Test’
We wanted at least part of the post-test to be identical for both groups. One reason
for this was to enable direct comparisons between the groups on the same questions.
Identical questions do not guarantee a fair comparison, however. An inherent

problem in evaluating educational innovations is that researchers may unwittingly
favor a particular group—especially if they designed the innovation being studied. At
an extreme, one group might be taught precisely what the post-test asks. Crichton
and Krishnamurthi recently reflected on this while designing interventions to improve
a textbook alongside assessments to evaluate the interventions: “If an intervention
is too tailored to the specific question being targeted, then learners are likely not
forming a robust mental model. We managed teaching-to-the-test by ensuring that
interventions did not change the textbook to trivialize the problems under question,
e.g., by adding the answer verbatim to the book.” [13]
Not providing the exact answers to one group only is a start, but insufficient. If

one group’s intervention materials closely match the post-test, any success on the test
might be mere memorization. In the words of Perkins and Salomon, “any learning
requires a modicum of transfer. To say that learning has occurred means that the
person can display that learning later.” [47] In an attempt to capture genuine learning,
we designed conceptual questions that were ‘at a distance’ from what the participants
experienced during the intervention. We achieved this using a different domain than
the graphic one which was used in the teaching materials, staying clear from the risk
of ‘teaching to the test.’

14:21

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

5.3.2 Transfer to Isomorphic Programs
Within the constraints of a short experiment, one can hardly expect far transfer to
very dissimilar problems; there is plentiful evidence that far transfer is a lofty goal in
general (e.g., [16, 28]). We instead aimed to find near transfer, asking the participants
to answer questions about programs that are not in the domain of graphics but that
are isomorphic with what the PyTamaro group was previously taught in that domain.
The diagram in Figure 2 illustrates how transfer to an isomorph doesn’t happen

‘directly.’ Instead, learners are supposed first to acquire an ‘abstract’ understanding
and then to apply it in a new context.

Figure 2 Learners are exposed to a concrete task during the teaching phase. During the
testing phase, they are assessed on an isomorphic task in a different context.
Achieving transfer requires acquiring an understanding of the abstract concept.

We designed the multiple-choice questions with this idea in mind, focusing on the
‘abstract concepts’ that PyTamaro was hypothesized to teach (cf. Table 3, that shows
the isomorphisms between the PyTamaro intervention and the post-test).

5.3.3 Transfer, Even to Isomorphic Tasks, Can Fail
Contrary to our hypothesis H1, the PyTamaro group, despite having practiced on tasks
isomorphic to those in the post-test, did not perform better than the Turtle group. It
is well known that transfer is not easy to achieve or to demonstrate through research.
The result of this study provides further evidence that programming is no exception
in this regard, even when aiming only for near transfer to isomorphic tasks.

One reason why even near transfer often fails is that learners—novices especially—
may fixate on the surface characteristics of a task and consequently fail to draw the
appropriate connections between tasks and abstract from them. This challenge has
been noted, among others, by Perkins and Salomon, who wrote: “Subjects usually do
not recognize the connection between one isomorph and the other and hence do not
carry over strategies they have acquired while working with one to the other” [47].
Given that our post-test questions were in a different domain, albeit isomorphically
so, it is debatable whether we truly tested for near or far transfer.

Transfer is likelier if instruction highlights the relationships between concrete tasks
and abstract concepts. For instance, Reed et al. [50] discovered that many people
would not transfer from the ‘Jealous Husbands’ problem to the similar ‘Missionary–
Cannibal’ without explicit instruction. Our teaching interventions did not consistently
and explicitly highlight opportunities for transfer, which may have affected our results.
An improved intervention could embrace more deeply the idea of “semantic waves” [14,
36] and guide learners from the abstract to the concrete and then back to the abstract,
highlighting the relationships between the two levels of abstraction.

14:22

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

6 Threats to Validity

Prior Knowledge As discussed in Section 3.1, the lack of a pre-test is justifiable given
the randomization and the large sample, and even has some advantages. Nevertheless,
this decision does preclude us from computing ‘learning gains,’ and there remains the
issue of how prior knowledge affected our participants’ performance.
We targeted students who did not have much experience, but not all participants

were novices. However, even with only novices included in the analysis, the differences
between the two groups were minor. One plausible and perhaps likely explanation
for this is that the participants’ performance was sufficiently influenced by what they
had previously learned in CS1 that any effect of either group’s short intervention on
the post-test is negligible in comparison.
The participants’ CS1 course adopts a ‘typical imperative’ view of programming

(loops, etc.) that is more closely attuned to the turtle approach than to PyTamaro’s
compositional graphics approach, as the latter instead emphasizes the compositional
power of expressions that comes with ‘functional’ programming (nested calls, etc.).
We speculate that this might have introduced a slight bias in favor of the Turtle group.
Similarly, the Turtle group could have been advantaged by prior experience in ‘com-
putational thinking’ or ‘problem solving’ activities that do not involve programming
as such but that match the spirit of turtle graphics (e.g., [7]); such activities are not
uncommon in secondary education.

Study Duration The experiment was designed to allow participants to work through a
programming tutorial with graphics for one hour. As noted in the discussion, the short
duration enabled controlling certain variables (e.g., avoiding participants discussing
the lessons’ content between groups, having the exact teaching materials available for
reproducibility), but also significantly limited opportunity to observe effects that are
more visible in the medium and long term.

Data Collection Engagement and prior experience were self-reported and potentially
subject to self-reporter bias.

The items for our surveys and post-test were constructed ad hoc and not validated.
Several post-test items were in the multiple-choice format, which can be problematic
if the options are not paired with explanations [8]. We mitigated this by including an
“I don’t know” option, but our questions may nevertheless have been too ‘guessable.’

The items on tracing, modifying, and writing code were designed to be ‘comparable’
between groups but not identical.

Generalizability All our participants come from a single university course, albeit one
with students from a wide variety of engineering majors; we cannot comment on how
our results might generalize to other groups. Moreover, our subjects were volunteers
who received a small compensation for participating, which may have introduced a
selection bias.

14:23

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Response Bias We solicited answers from participants both in the pre- and the
post-survey. Participants did not engage with a ‘teacher,’ but may still have skewed
their answers due to the social-desirability bias. In particular, the pre-survey asked
participants to voluntarily disclose their gender, which is known to possibly affect
their behavior (for example with respect to the stereotype threat).

Authorship Bias We preemptively compensated for an authorship bias when designing
the experiment, disadvantaging our own library in several ways. (1) We placed
PyTamaro in an imperative-style CS1 that does not play to PyTamaro’s strengths.
(2) We used animated (thus possibly slightly more engaging) visuals only in the Turtle
materials, as we thought they were needed to provide a high-quality explanation
of the turtle’s state changes over time. (3) We introduced to both groups the idea
of a loop to accumulate a value, despite it not normally being covered in Turtle
pedagogy, as we felt it necessary to fairly prepare all participants for one question
on the post-test. (4) We wrote the tracing question in a style far from optimal for
PyTamaro programs (Sections 3.6.3 and 5.2.1). (5) We took care of setting up the
turtle’s drawing environment (e.g., providing a large enough canvas).
Ultimately, we cannot rule out an authorship bias. For transparency, the complete

materials used in the study are available as appendixes.

7 Conclusion

In this article, we have presented a randomized, controlled experiment on the use of
graphics in teaching programming to beginners. We found that both a compositional
graphics approach enacted using the PyTamaro library and a more traditional turtle
graphics approach engaged student programmers; female students might find such
approaches particularly engaging. We did not find evidence of better transfer from
a short PyTamaro session to a post-test on isomorphic tasks outside the graphics
domain, compared to the Turtle session which did not feature those tasks. Overall,
there were few differences between the two experimental groups. As an exception to
that trend, beginners appear to trace compositional graphics code more accurately
than ‘comparable’ turtle graphics code.
We have outlined several alternative—or complementary—explanations for our

findings. Further research is needed to test our speculations as well as the generaliz-
ability of our results. Ultimately, our findings are inconclusive regarding compositional
graphics approaches such as PyTamaro’s; we recommend that future research look
into interventions longer in duration than what we were able to investigate here.

Acknowledgements We thank the reviewers for their observations that helped clarify
several parts of this article. We are grateful to the instructors of the Y1 course at Aalto
for allowing us to advertise this study, and to the students who participated.
This work was partially funded by the Swiss National Science Foundation project

200021_184689.

14:24

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

A Pre-Survey

Participants answered a pre-survey with the following questions:

On demographics:
– How old are you? [numeric]
– What is your gender? [male; female; non-binary; other; prefer not to answer]
On prior experience:
– How many lines of code have you written before starting the course, across all
languages except HTML and CSS? [none; fewer than 50; fewer than 500; fewer
than 5000; more]

– Which rounds of exercises of the course have you completed? [subset of #1, #2,
#3]

– Have you ever written a program that draws graphics before? [yes; no; not sure]
On the attitude towards programming (answers on a seven-point Likert scale):
– It is useful for me to know how to program. [seven-point Likert from “not at all
true” to “completely true”]

– Programming is boring. [seven-point Likert]
– Programming is fun. [seven-point Likert]

B Teaching Intervention

This Section contains the exact text of the teaching intervention used in the study.
The intervention was divided into four mini-lessons, which correspond to the four
subsections below. Each lesson starts with a common part that was shown to both
the PyTamaro and Turtle groups. The lesson then “splits in two”: participants in
the PyTamaro group worked through the part marked as “PyTamaro-Only”, whereas
participants in the Turtle group worked through the part marked as “Turtle-Only”. A
short recap concludes each lesson and is common to both groups.

During the intervention, the Python code were shown in a web-based environment
that allowed participants to run the code and see the output.

B.1 Mini-Lesson 1 (of 4)

All the programs you have written so far in the CS1 course deal with text: perhaps
they read some input from the user as a sequence of characters (that is, a string),
they do some processing and calculations, and call the function print to spit out an
answer that is again textual.
Over the course of the next hour, you will learn how to write programs that go

beyond that and can create graphics. If that sounds scary, fear not!

14:25

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Libraries It is much quicker to reuse program code that someone has already written,
instead of starting from scratch. This is why programmers constantly use so-called
libraries of reusable program parts to accomplish various things.
You can think of a library simply as a collection of names. Some of those names

refer to functions that the library provides for you to use: for instance, Python’s math
library offers a function named sqrt which computes the square root of a number.
Other names might just refer to plain values: again as an example, Python’s math
library contains the name pi for the mathematical constant π, and thus pi equals
approximately 3.1415.
The tiny Python program below prints an approximate value of pi, which comes

from the math library. Note that you can choose to run the program — try it!
1 from math import pi
2 print(pi)

The first line of the program above “imports” the name pi so that you can use it in
your program. While the import is a necessary step, you will not see it again in all the
programs featured in the rest of these less material. You do not need to worry about
that: we add all the necessary imports automatically for you behind the scenes.

There are many libraries; we’ll use one of them When they need to perform a task,
programmers can decide to use one of the many available libraries. Drawing graphics
is no exception: there are many available libraries to draw onscreen, and they embrace
different approaches.
This study explores two different libraries to draw graphics in Python. You have

been randomly assigned to one of them, which you are going to use in this session.
After the study is over, however, you are also welcome to look at the materials for the
other library, if you are interested.

PyTamaro-Only Part

Let’s Draw a Rectangle Let’s dive into it and see how to use a library named PyTamaro
to draw graphics. We start very humbly, writing a program to create a rectangle and
show it on the screen. Conveniently, the PyTamaro library offers you a function named
rectangle to create rectangles. The library also has names such as green for basic
colors.
How do you call the rectangle function? Here is an illustration of the basic idea:

Figure 3 Example call of rectangle

rectangle takes in three parameters, which are represented in the above illustra-
tion by the three incoming arrow-shaped “holes”. The first two parameters determine
the width and the height of the rectangle; the third one determines the color.

14:26

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

We can use numbers such as 200 and 100 for the first and the second parameter, to
indicate the width and the height, and a color such as green for the third parameter.

How can we use this function in a Python program? Let’s store its return value, our
rectangle (represented in the image near the outgoing arrow), in a variable named
football_field. (There’s an example of this below.)
And then, just like one can pass any string such as "Hello world" to the func-

tion print to display a text on the screen, let’s pass a graphic to a function named
show_graphic to display it onscreen.

Try it! In the code below, the show_graphic function call contains three dots (...).
Edit the program: replace the dots with the name of the variable where we stored the
rectangle. Then run the program.

1 football_field = rectangle(200, 100, green)
2 show_graphic(...)

Have you managed to see your first graphic? Congratulations!

Let’s Rotate Things Imagine now that you are sitting right at a corner of a stadium:
the football field would not look to you “horizontal”, but rotated by some angle. We
can try to modify our program to draw something like that. The PyTamaro library
offers you a function named rotate that takes two parameters: an angle in degrees
and a graphic. The function returns a graphic rotated counterclockwise by that angle.
For example:

Figure 4 Example call of rotate

In the next program below, complete the assignment in the second line by replacing
the dots with a call to the function rotate. For rotate’s first parameter, write 45 (i.e.,
45 degrees); for the second, write football_field. Do not forget to separate the two
parameters with a comma.

1 football_field = rectangle(200, 100, green)
2 rotated_field = ...
3 show_graphic(rotated_field)

Do you see a rotated field? Awesome!
Perhaps you are wondering if we really must have two variables in the program

above. The answer is: no. We can rewrite the solution to combine the function calls
to rectangle and rotate. In terms of the illustrations above, we are plugging the
outgoing arrow of rectangle straight into the second incoming “hole” of rotate.
Take another look at the program just above. We need to plug the call to

rectangle into the place reserved for the second parameter when we are call-
ing the function rotate. Do that now in the code below: copy the expression

14:27

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

rectangle(200, 100, green) (the entire expression, including the closing)) and
paste it below, replacing the three dots

1 rotated_field = rotate(45, ...)
2 show_graphic(rotated_field)

Turtle-Only Part

Let’s Draw a Rectangle Let’s dive into it and see how to use a library named turtle to
draw graphics. We start very humbly, writing a program to create a line to be shown
on screen.
The turtle library is based on the following metaphor.
Imagine you are controlling a “robotic turtle” that can move on a canvas carrying

a colored pen. You give commands to the turtle. When the turtle moves, it leaves a
trace on the canvas, ultimately producing a drawing.
One of the commands understood by the turtle is forward. The function forward

takes in one number as a parameter. Calling the function causes the turtle to move
forward by the given amount of steps.

Note that forward moves the turtle in the direction it is currently facing. The turtle
starts facing east (that is, towards the right of your screen). Here is an animation of
the turtle moving forward with 100 steps:

Figure 5 Animation forward [last frame — only the last frame of animations is reproduced
in this article, but the full animation was visibile to the participants during the
study]

We can also change the color of the pen carried by the turtle, to draw colored lines
such as in the example above. The default pen color is black, but we can use the
function pencolor to use a differently colored pen.

The pencolor function takes in one single parameter, a string containing the name
of the desired color for the pen.

To recap, you can draw a colored line by calling pencolor with a string parameter
such as "green" for the name of the color, and further calling forwardwith a numerical
parameter such as 100 for how much the turtle should move forward.
Try it by yourself! Replace the three dots ... inside the call to pencolor with the

appropriate string to draw a green line.

1 pencolor(...)
2 forward(100)

Have you managed to see your first graphic? Congratulations!

14:28

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Figure 6 Animation forward-left [last frame]

Let’s Rotate We cannot get very far just by commanding the turtle to move forward.
Luckily, there are functions that rotate the turtle — or, in other words, change the
direction that the turtle faces in. Two such functions are named left and right. For
example, the left function offered by the library has one single parameter: an angle
in degrees that indicates how much the turtle should turn left.
We can draw a “mirrored” letter L (something like L) by first moving forward as

before (with the turtle moving towards the right edge of the screen), then turning the
turtle left by 90 degrees, and finally moving forward again.
Here is an animation that shows the plan for our turtle:
In the third line of the following program, replace the dots with a call to the function

left as described above.

1 pencolor("green")
2 forward(100)
3 ...
4 forward(200)

Do you see something that resembles a L? Awesome!
Perhaps you are wondering if we cannot draw a proper letter L. The answer is: we

can. To do so, we’ll make use of the backward function. The function behaves exactly
like forward but moves the turtle backward (relative to the direction it is facing).
Here is the plan to draw the letter L. As always, the turtle starts facing east. We

move forward by a certain amount, and then we move backward by the same amount.
Then, as before, we turn left 90 degrees and move forward to complete the letter.

Now, in the code below, replace the three dots with backward(100) to complete the
plan above.

1 pencolor("green")
2 forward(100)
3 ...
4 left(90)
5 forward(200)

Common Part (PyTamaro and Turtle)

So Far, So Good! If everything worked, give yourself a pat on the back! In this lesson,
you learned what a programming library is and how to use one to draw a very simple
graphic. On to the next adventure!

14:29

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

B.2 Mini-Lesson 2 (of 4)

You now know how to draw an extremely basic shape. In this lesson, we will step
up the game a bit and try to draw a house. The house is made up of a ground floor,
represented by a square, on top of which sits a roof, represented by an equilateral
triangle.

PyTamaro-Only Part

Let’s Draw the Ground Floor You can use the square! function to create the ground
floor. It takes two parameters, the side length and the color, and returns a graphic of
a square.
In the program below, replace the dots on the first line. The line should assign

value to the variable ground_floor: the should variable holds the return value of the
square function, when that function is called with 100 as the side length and yellow
as the color.

1 ground_floor = ...
2 show_graphic(ground_floor)

(The square function works by creating a rectangle of the specified color in which
width and height are the same. In fact, it internally makes use of the rectangle
function seen in the previous lesson.)

Let’s Draw the Roof We now need to figure out how to create the roof. Luckily, the
PyTamaro library offers a function named triangle. It takes four parameters. The
first two determine the lengths of two of the triangle’s sides; the third parameter
determines the angle between those sides. The last parameter, as usual, describes the
color.

Let’s create a red equilateral triangle with a side length of 100. All of an equilateral
triangle’s internal angles measure 60 degrees. Therefore, we can call the triangle
function passing in the values 100, 100, 60, and red. Visually:

Figure 7 Example call of triangle

Replace the dots in the code below with the appropriate function call.

1 roof = ...
2 show_graphic(roof)

Great! Now that we have the two individual graphics, we need a way to combine
them together as we intend.

14:30

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Let’s Put the Pieces Together PyTamaro caters to our needs: it offers a function above
to place two graphics one above the other. The function above places the graphic
received as the first parameter above the graphic specified by the second parameter.
It returns a new, composed graphic.
Here is how we intend to use it:

Figure 8 Example call of the above function

Complete the code below by replacing the dots in the third line with a call to the
function above, passing in the two graphics that are stored in the ground_floor and
the roof variables.

1 ground_floor = square(100, yellow)
2 roof = triangle(100, 100, 60, red)
3 house = ...
4 show_graphic(house)

Once you see the house, you can also experiment and exchange the two parameters
in the call to above. Run the program again and observe the difference!

Turtle-Only Part

Let’s Draw the Ground Floor You can use the function square to draw the ground
floor. It takes just one parameter, the side length.
It is useful to understand just how this square function works. It repeats this

combination of commands four times: 1. it moves the turtle forward by the given side
length, and 2. then it rotates the turtle 90 degrees to the right.
Remember that at the beginning of a program the turtle starts by facing east (that

is, towards the right of the screen). Assuming that as a starting point, this is what
happens when the function square is called: 1. The turtle moves forward drawing the
top side of the square, and then it turns right. At this point, the turtle is facing south.
2. The turtle moves forward drawing the right side of the square, and then it turns
right. At this point, the turtle is facing west (that is, towards the left of the screen). 3.
The turtle moves forward drawing the bottom side of the square, and then it turns
right. At this point, the turtle is facing north. 4. The turtle moves forward drawing
the left side of the square, and then it turns right.

After all the steps, the turtle has drawn a square. It is again facing in the same direc-
tion as before the execution of the square function. The animation below exemplifies
this process.

Now that you have an idea of how the square function works, replace the dots with
a call to it, using 100 as a value for the first and only parameter.

1 pencolor("yellow")
2 ...

14:31

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Figure 9 Animation, drawing a square with turtle [last frame]

Let’s Add the Roof We now need to figure out how to create the roof. For that, we
can use a function named triangle, which is similar to square.
triangle commands the turtle to move forward and turn right 120 degrees three

times. In practice, this means that the function draws the three sides of a triangle
one after the other. The animation below shows what happens when the triangle
function is called with a side length of 100. This animation, too, assumes that the
turtle faces east just before calling the function.

Figure 10 Animation, drawing a triangle with turtle [last frame]

In the code below, replace the dots with a call to triangle, passing in the value 100
for the side length. Observe that before that command we have already added a call
to pencolor, so that the roof is drawn in red.

1 pencolor("yellow")
2 square(100)
3 pencolor("red")
4 ...

Whoops! You might have seen a drawing that was not what we intended! Don’t
worry: there is a simple explanation. When we call triangle, the first thing that
happens is that the turtle moves forward, in order to draw the first side of the triangle.
But this happens after the call to square, with the turtle (again) facing east; calling
triangle makes it move forward — east — and then turn 120 degrees to the right,
which is not what we want.

We need to rotate the turtle before calling the triangle function, so that the turtle
well positioned to start drawing the roof simply by moving forward.

We know how to do that: we can use the left function to turn the turtle left by
60 degrees (the measure of an equilateral triangle’s internal angle) just before drawing
the triangle.
Replace the dots in the code below with the appropriate call to left.

1 pencolor("yellow")
2 square(100)
3 pencolor("red")
4 ...
5 triangle(100)

14:32

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

Common Part (PyTamaro and Turtle)

Wow! That took a while, but you can now feel proud: you wrote a program to draw
a house!

B.3 Mini-Lesson 3 (of 4)

Our single house feels lonely: it is time to give it company.

Two Houses Let’s draw a duplex house, which simply means two single houses next
to each other.

PyTamaro-Only Part

The PyTamaro library offers a convenient beside function that works pretty much
like the above function you have already used.
It takes two graphics as parameters and returns a new graphic by placing one

specified as the first parameter on the left, and the one specified as the second
parameter on the right.
Complete the code below by replacing the dots with a call to beside. As you call

beside, you can use the variable house twice, once for each parameter (since we’re
placing two identical houses side by side).

1 ground_floor = square(100, yellow)
2 roof = triangle(100, 100, 60, red)
3 house = above(roof, ground_floor)
4
5 two_houses = ...
6 show_graphic(two_houses)

Got two houses? Great! However, some privacy is always welcome.

Privacy, Please! Could we add a wall in between the houses? A narrow, black rectangle
will do the job.

But how? We’d like to place three graphics next to each other: a house, a wall, and
another house. But what we have is a two-parameter function beside that places two
graphics next to each other.

Well, we can call our function twice: the first call can combine the left house with
the wall, while the second one can combine the previous result and the right house.

Implement this idea in the code below, replacing the dots with the appropriate calls
to beside:

1 ground_floor = square(100, yellow)
2 roof = triangle(100, 100, 60, red)
3 house = above(roof, ground_floor)
4
5 wall = rectangle(15, 187, black)
6
7 left_house_with_wall = ...
8 two_houses_with_wall = ...

14:33

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

9
10 show_graphic(two_houses_with_wall)

An Alternative Solution There is a different but equally valid solution that perhaps
already occurred to you.
There’s no rule saying that the first step must involve the left house and the wall.

We could first combine the wall and the right house so that they are next to each
other, and then combine the left wall with the previous result!

Try to implement this variant and verify that it actually produces the same drawing.
1 ground_floor = square(100, yellow)
2 roof = triangle(100, 100, 60, red)
3 house = above(roof, ground_floor)
4
5 wall = rectangle(15, 187, black)
6
7 wall_and_right_house = ...
8 two_houses_with_wall = ...
9
10 show_graphic(two_houses_with_wall)

Turtle-Only Part

We can accomplish this with a rather simple idea. We have to: 1. Draw the first
house. The turtle ends up at the top-left corner of the square. It is not facing east,
however, because we rotated it 60 degrees left before calling triangle. 2. Re-position
the turtle so that it will be ready to execute again the same commands as the first step.
For this we need to: (a) compensate for the left turn made before calling triangle by
turning right and (b) then move the turtle forward. 3. Execute the same commands
as the first step to draw the second house.

Complete the code below with two appropriate lines that replace the dots with: 1.
a call to right with 60 degrees as a parameter, to undo the left turn; and 2. a call to
forward to move the turtle by the same width as one house, that is 100 steps.

1 pencolor("yellow")
2 square(100)
3 pencolor("red")
4 left(60)
5 triangle(100)
6 ...
7 ...
8 pencolor("yellow")
9 square(100)
10 pencolor("red")
11 left(60)
12 triangle(100)

Note something important, though! When you moved the turtle forward during
the second step, it is still carrying a red pen that draws. This turns out not to be a
problem in this specific program, since the turtle moves along a line that has already

14:34

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

been drawn in red. Going over it a second time does not do any harm. But be mindful
of this pitfall in general: otherwise, your drawing may have surprising and unwanted
lines.
So you got two houses? Great! However, some privacy is always welcome.

Privacy, Please! Could we add a thick wall between the houses? A black square will
do the job.
Modify the program below to add a wall, which requires replacing the dots with

these three steps:

1. Change the color of the pen to "black".
2. Draw a square of side 100.
3. Position the turtle appropriately so that it is ready to draw the second house.

Note that the third step is essential and that, in general, the order in which you
give commands to the turtle matters.

1 pencolor("yellow")
2 square(100)
3 pencolor("red")
4 left(60)
5 triangle(100)
6 right(60)
7 forward(100)
8 ...
9 ...
10 ...
11 pencolor("yellow")
12 square(100)
13 pencolor("red")
14 left(60)
15 triangle(100)

(Do not worry about the left border of the second house overwriting the black wall.)
Once you got the proper drawing, convince yourself that the order of the commands

matters. Suppose that the plan above had step 1 and step 2 swapped (which means
drawing the wall before changing the pen color). Modify the code above to reflect
this change. Observe the result: what happens to the drawing?

Common Part (PyTamaro and Turtle)

You have practiced drawing slightly bigger graphics. Let’s bring this one step forward
with the next lesson.

B.4 Mini-Lesson 4 (of 4)

Let’s build some bigger graphics!
In many pictures, there are repeated elements; a picture might have several houses,

for example. That does not mean we have to duplicate a lot of code! The computer is
excellent at repeating things for us.

14:35

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

In the CS1 course, you have already encountered one mechanism in Python to
repeat: the for loop. Before getting back to graphics, let’s review a simple example
that might help you to refresh your knowledge.

Recap: for Loops Suppose you want to write a simple program to compute the
average of the five grades you obtained in the past semester. Each grade is asked to
the user using the function input.

To compute the average, we need to divide the sum of all grades by the number of
grades. How do we keep track of the sum of all grades? We can use a variable, named
for example sum_grades. At any point during the execution of the program, the role
of that variable is to track the sum of the grades seen so far.

1 n_grades = 5
2
3 sum_grades = 0
4 for i in range(n_grades):
5 grade = int(input())
6 sum_grades = sum_grades + grade
7
8 average = sum_grades / n_grades
9 print("Average grade:", average)

The for loop repeats the instructions “contained” in it (the two indented lines)
n_grades times, which here means five times. In other words, the loop does five
iterations over the instructions; we’ll use this term below.

Before the first iteration, we do not have any information about the grades, yet. We
can conveniently initialize the variable sum_grades! to 0.

Now consider the first iteration. For example, let’s say that the user first enters the
grade 4. Then, sum_grades will be assigned to the value 0 + 4, which is just 4.
Imagine that the user inputs the grade 3 at the second iteration of the loop. The

value of the variable sum_grades will be updated to 3 + 4!, that is 7.
This process goes on for all the specified number of iterations (n_grades, in the

example). At the end of the last iteration, the variable sum_grades has accumulated
the sum of all grades, exactly like we wanted. We can then easily compute and print
the average.

Back to Graphics! Can we use a for loop to draw a graphic containing a repeated
pattern? Sure we can!

Consider a simplified street that consists of a number of houses, all having the same
appearance as the one we have drawn so far. We are looking at a densely populated
neighborhood: there is no space between adjacent houses.

PyTamaro-Only Part

We can make good use of the for loop to repeat the same operation multiple times
and place many graphics next to each other.
In the example presented at the beginning of this lesson, we used a variable

(sum_grades) to accumulate the grades summed at each iteration. We can do the

14:36

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

same and use a variable to accumulate the houses placed next to each other at each
iteration.

Just like for grades we added one new grade at each iteration, we will now add one
new house at each iteration to the ones “joined” so far.
Let’s give the name street to the variable used to accumulate the houses. Before

the loop, our street is going to be empty (of houses and indeed of anything). The first
iteration will update street so that it contains one house. The second iteration will
add one more house, so that street will contain two houses. The third iteration will
add one more house: street will then contain three houses, and so on.

Which initial value should we use for street, before the loop? Like 0 in the example
with the grades, we should use a value that works for the first iteration of the loop.
Here, we need a graphic that when placed beside our first house, just results in that
same single house.

PyTamaro has a function for this purpose: it is named empty_graphic. The function
takes no parameters and returns an empty graphic. When combining an empty graphic
with any other graphic (using beside, for example), the result is just the other graphic.
Convenient, and a bit like zero in math!

Look closely at the code below. The first three lines create a house as we have
always done so far. A variable n_houses contains the number of houses we want to
have in our street. We initialize street to an empty graphic, the result of calling the
parameterless function empty_graphic.
Then comes our for loop.
At each iteration, we need to assign to street a combined graphic. That graphic is

the result of placing any previous houses beside one more house; in other words, we
should place street’s earlier value beside a new house from the house variable.
Replace the dots below with a call to beside. As parameters, write the names of

the two variables suggested above.
After the loop, street is a graphic that contains five houses next to each other, and

is ready to be shown as usual with show_graphic.

1 ground_floor = square(100, yellow)
2 roof = triangle(100, 100, 60, red)
3 house = above(roof, ground_floor)
4
5 n_houses = 5
6
7 street = empty_graphic()
8 for i in range(n_houses):
9 street = ...
10
11 show_graphic(street)

Can you see a street with five houses? Lovely!

Turtle-Only Part

We can now make good use of the for loop we just reviewed to repeat the same
operation multiple times and place many graphics next to each other.

14:37

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

We need to draw a street of houses. Each iteration of the for loop will just draw one
house.

Let’s recall the plan we used in the previous lesson to draw just two houses: 1. Draw
the first house. 2. Re-position the turtle so that it will be ready to execute again the
same commands as the first step. 3. Draw the second house.

This implies that at the end of each iteration we need to prepare the ground so that
the next one can start properly. Concretely, it means that after drawing a house (step 1
in the plan), we always need to: (a) turn the turtle right by 60 degrees (to “undo” the
left turn made before drawing the triangle), and (b) move the turtle forward by 100
steps.
Complete the code below with the two appropriate commands so that after each

iteration, the turtle is positioned so that it’s ready to start drawing the ground floor of
the next house.

1 n_houses = 5
2
3 for i in range(n_houses):
4 pencolor("yellow")
5 square(100)
6 pencolor("red")
7 left(60)
8 triangle(100)
9 ...
10 ...

Can you see a street with five houses? Lovely!
There is just one tiny inefficiency: we also reposition the turtle at the last iteration

of the loop, even though there is no house to draw further. You can safely ignore this,
given that we are not at all concerned with performance here.

As a final point, notice how using a loop helped us to avoid duplicating code, which
is something that we did in the previous lesson, in which all the commands to draw
a house were written twice. Experienced programmers consider code duplication a
very bad thing. Think about what you would need to do if you had many houses in a
graphic and decided that their roofs should be rectangles instead. It would require
you to go through lots of lines and replace every occurrence of triangle with other
code. Besides being a boring manual process, you would risk forgetting to do some
replacements.

Common Part (PyTamaro and Turtle)

End of the Mini-Lessons You have now practiced for loops a bit more and learned
how they help also in programs that deal with graphics.

C Post-Survey

Participants answered a post-survey with the following questions, all on a seven-point
Likert scale from 1 (“not at all true”) to 7 (“completely true”):

14:38

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

I found the preceding lessons interesting.
I feel that I learned about programming concepts from these lessons.
I already knew beforehand how to do graphical programming similar to what was
taught in the lessons.
I already knew beforehand all the general programming content (variables, func-
tions, loops, etc.) that was covered in the lessons.
Programming with graphics is fun.
I like programming with graphics more than the text-based programming we have
done in CS1.
I would like to learn more about programming with graphics.

D Post-Test Multiple-Choice Questions

For each multiple-choice question, participants have been asked to choose the claim
they believe is most accurate. Questions featured an additional “I don’t know” option,
to be picked only in case the participant was very unsure.

D.1 Question 1

“Cha Cha Cha” is the title of a song. This Python program plays with the song title
and prints “Cha” three times, each one on a separate line.

1 print("Cha")
2 print("Cha")
3 print("Cha")

Your friend says that it is possible to get the same output differently by introducing
a variable word:

1 word = "Cha"
2 print(word)
3 print(word)
4 print(word)

Is the program still working as before?
Yes, because word is used only once in each instruction/line. An instruction like
print(word + word + word) is invalid and produces an error.
Yes, because we can use the value stored in the variable as many times as we want.
No, only the first print works. To fix the second program, we would need to add
word = "Cha" before the second and the third print as well.
No, because the second program prints three times word.

14:39

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

D.2 Question 2

Python’s math library contains a function named sqrt. It takes one parameter, the
number to compute the square root of. Its return value is also a number, the square
root of the provided number.

This program first computes the square root of 16, and then the square root of the
result, which is finally printed:

1 root_of_sixteen = sqrt(16)
2 final_root = sqrt(root_of_sixteen)
3 print(final_root)

Your friend says that the same result can be obtained with a shorter program:
1 print(sqrt(sqrt(16)))

Is the program still working as before?
Yes, because of the mathematical properties of the square root function. The same
transformation with a function half that divides a number by two would not have
worked.
Yes, because it first computes the square root of 16, then computes the square root
of the result, and eventually prints the final result.
No. sqrt(16) works, because we are passing a number, 16, to the function. But in
sqrt(sqrt(16)) we are passing sqrt(16), which is not a number but a function
call.
No, because sqrt is a function that takes one parameter, and the second program
attempts to give the first (outermost) sqrt call two parameters.
No, because we need a variable to store the result of sqrt before we can pass it to
another function call.

D.3 Question 3

Imagine that a Python library contains a function named subtract. It takes two
numbers as parameters, and returns the result of subtracting the second number from
the first one.

1 result = subtract(10, 7)
2 print(result)

Does executing the program above print 3?
Yes, because calling subtract is one way to subtract a number from another. Because
we are free to choose the order of parameter values, we could have also written
result = subtract(7, 10) to get the same result.
Yes, because we are correctly passing the numbers 10 and 7 to the function subtract.
No, because functions can only have one parameter. It is therefore impossible for
the library to offer a working subtract function with two parameters.
No, because that is not how you should pass multiple parameters when a function
requires more than one: the call should have been subtract(10)(7).

14:40

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

D.4 Question 4

Imagine that a Python library contains a function named fake_random. It has zero
parameters, and always returns the number 42 as a fake random number.

1 print(fake_random())

Does executing the program above print 42?
Yes, because fake_random() calls the function, which will return the number 42.
The result is passed to print. Also, the empty parentheses () are necessary; just
print(fake_random) does not work.
Yes, because fake_random() calls the function. Also, writing just
print(fake_random) without the empty parentheses would have done the
same, given that the function returns a constant number.
No, because the function fake_random cannot possibly exist as such, as functions
need to have at least one parameter.
No, because the function fake_random has zero parameters, and such a parameter-
less function cannot return a value.
No, because we need a variable to store the result of fake_random before we can
pass it to print.

D.5 Question 5

Imagine you have a function named combine at your disposal. It takes two strings
as parameters and returns a combined string. For example, combine("hel", "lo")
returns "hello".
The goal is to write a program that constructs the word restaurant from three

pieces, then prints out the result.
One of your friends comes up with the following program:

1 first_combination = combine("re", "stau")
2 word = combine(first_combination, "rant")
3 print(word)

Another friend suggests this other implementation:

1 first_combination = combine("stau", "rant")
2 word = combine("re", first_combination)
3 print(word)

What can you say about these two programs?
They both work, even if the word is constructed in two alternative ways.
The first one works, but the second one does not, because "re" is added in the
second line after "staurant" has been created.
The first one works, but the second one does not, because combine is not commu-
tative (that is, because exchanging the first parameter with the second makes a
difference).

14:41

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

Neither one works, as a two-parameter function cannot be defined (so that it
works).

D.6 Question 6

You want to write a program that asks the user for five numbers, multiplies all of them
together, and prints the result. Your friend suggests this skeleton, but they are unsure
about what to write instead of the dots at the beginning.

1 ...
2 for i in range(5):
3 number = int(input())
4 product = product * number
5 print(product)

What should the dots be replaced with?
product = 0, because the variable product needs to be initialized to the neutral
number 0 before looping.
product = 1, because 1 is the only number that multiplied with any other number
just results in the other number.
We need to initialize product to some value, but it doesn’t matter which one,
because that value will in any case be replaced by the first number entered by the
user during the first iteration of the loop.
There is no number that works as an initial value for product. Other changes would
need to be done to the program as well.

References

[1] Harold Abelson and Andrea diSessa. Turtle Geometry: The Computer as a
Medium for Exploring Mathematics. Edited by Daniel G. Bobrow, Michael Brady,
Randall Davis, and Patrick Henry Winston. Artificial Intelligence Series. Cam-
bridge, MA, USA: MIT Press, June 1981. isbn: 978-0-262-01063-4.

[2] Marini Abu Bakar, Muriati Mukhtar, and Fariza Khalid. “The Effect of Turtle
Graphics Approach on Students’ Motivation to Learn Programming: A Case
Study in a Malaysian University”. In: International Journal of Information and
Education Technology 10.4 (2020), pages 290–297. issn: 20103689. doi: 10.
18178/ijiet.2020.10.4.1378.

[3] Ian Barland, Robert Bruce Findler, and Matthew Flatt. The Design of a Functional
Image Library. 2010. url: https://users.cs.northwestern.edu/~robby/pubs/
papers/sfp2010-bff.pdf (visited on 2025-02-07).

[4] Karen Brennan and Mitchel Resnick. New Frameworks for Studying and Assessing
the Development of Computational Thinking. 2012. url: http://scratched.gse.
harvard.edu/ct/files/AERA2012.pdf.

14:42

https://doi.org/10.18178/ijiet.2020.10.4.1378
https://doi.org/10.18178/ijiet.2020.10.4.1378
https://users.cs.northwestern.edu/~robby/pubs/papers/sfp2010-bff.pdf
https://users.cs.northwestern.edu/~robby/pubs/papers/sfp2010-bff.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

[5] Donald Thomas Campbell and Julian Cecil Stanley. Experimental and Quasi-
Experimental Designs for Research. 2. print. Boston: Houghton Mifflin Comp,
1967. isbn: 978-0-395-30787-8.

[6] V. R. Cane and A. W. Heim. “The Effects of Repeated Retesting: III. Further
Experiments and General Conclusions”. In: Quarterly Journal of Experimental
Psychology 2.4 (Dec. 1950), pages 182–197. issn: 0033-555X. doi: 10.1080/
17470215008416596.

[7] Jacqui Chetty. “Combatting the War Against Machines: An Innovative Hands-on
Approach to Coding”. In: Robotics in STEM Education. Edited by Myint Swe
Khine. Cham: Springer International Publishing, 2017, pages 59–83. isbn:
978-3-319-57786-9. doi: 10.1007/978-3-319-57786-9_3.

[8] Luca Chiodini and Matthias Hauswirth. “Wrong Answers for Wrong Reasons:
The Risks of Ad Hoc Instruments”. In: Proceedings of the 21st Koli Calling
International Conference on Computing Education Research. Koli Calling ’21. New
York, NY, USA: ACM, Nov. 2021, pages 1–11. isbn: 978-1-4503-8488-9. doi:
10.1145/3488042.3488045.

[9] Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth. “Expressions in
Java: Essential, Prevalent, Neglected?” In: Proceedings of the 2022 ACM SIGPLAN
International Symposium on SPLASH-E. SPLASH-E 2022. New York, NY, USA:
ACM, Dec. 2022, pages 41–51. isbn: 978-1-4503-9900-5. doi: 10.1145/3563767.
3568131.

[10] Luca Chiodini, Juha Sorva, and Matthias Hauswirth. “Teaching Programming
with Graphics: Pitfalls and a Solution”. In: Proceedings of the 2023 ACM SIGPLAN
International Symposium on SPLASH-E. SPLASH-E 2023. New York, NY, USA:
ACM, Oct. 2023, pages 1–12. isbn: 979-8-4007-0390-4. doi: 10.1145/3622780.
3623644.

[11] Jacob Cohen. “A Power Primer”. In: Psychological Bulletin 112.1 (July 1992),
pages 155–159. issn: 0033-2909. doi: 10.1037//0033-2909.112.1.155.

[12] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences, Rev. Ed.
Statistical Power Analysis for the Behavioral Sciences, Rev. Ed. Hillsdale, NJ,
USA: Lawrence Erlbaum Associates, Inc, 1977. isbn: 978-0-12-179060-8.

[13] Will Crichton and Shriram Krishnamurthi. “Profiling Programming Language
Learning”. In: Proceedings of the ACM on Programming Languages 8.OOPSLA1
(Apr. 2024), pages 29–54. issn: 2475-1421. doi: 10.1145/3649812.

[14] Paul Curzon, Jane Waite, Karl Maton, and James Donohue. “Using Semantic
Waves to Analyse the Effectiveness of Unplugged Computing Activities”. In: Pro-
ceedings of the 15th Workshop on Primary and Secondary Computing Education.
Virtual Event Germany: ACM, Oct. 2020, pages 1–10. isbn: 978-1-4503-8759-0.
doi: 10.1145/3421590.3421606.

[15] Joost de Winter and Dimitra Dodou. “Five-Point Likert Items: t Test versus
Mann–Whitney–Wilcoxon”. In: Practical Assessment, Research and Evaluation
15 (Jan. 2010). doi: 10.7275/bj1p-ts64.

14:43

https://doi.org/10.1080/17470215008416596
https://doi.org/10.1080/17470215008416596
https://doi.org/10.1007/978-3-319-57786-9_3
https://doi.org/10.1145/3488042.3488045
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1037//0033-2909.112.1.155
https://doi.org/10.1145/3649812
https://doi.org/10.1145/3421590.3421606
https://doi.org/10.7275/bj1p-ts64

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

[16] Douglas K. Detterman. “The Case for the Prosecution: Transfer as an Epiphe-
nomenon”. In: Transfer on Trial: Intelligence, Cognition, and Instruction. West-
port, CT, US: Ablex Publishing, 1993, pages 1–24. isbn: 978-0-89391-825-5
978-0-89391-826-2.

[17] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. “A Functional I/O System or, Fun for Freshman Kids”. In: ACM SIGPLAN
Notices 44.9 (Aug. 2009), pages 47–58. issn: 0362-1340. doi: 10.1145/1631687.
1596561.

[18] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. How to Design Programs, Second Edition: An Introduction to Pro-
gramming and Computing. Cambridge, MA, USA: MIT Press, May 2018. isbn:
978-0-262-34412-8.

[19] Matthias Felleisen and Shriram Krishnamurthi. “Why Computer Science Doesn’t
Matter”. In: Communications of the ACM 52.7 (July 2009), pages 37–40. issn:
0001-0782, 1557-7317. doi: 10.1145/1538788.1538803.

[20] Sigbjorn Finne and Simon Peyton Jones. “Pictures: A Simple Structured Graph-
ics Model”. In: Proceedings of the 1995 GlasgowWorkshop on Functional Program-
ming. BCS Learning & Development, July 1995. doi: 10.14236/ewic/FP1995.6.

[21] Michael H. Goldwasser and David Letscher. “A Graphics Package for the First
Day and Beyond”. In: ACM SIGCSE Bulletin 41.1 (Mar. 2009), pages 206–210.
issn: 0097-8418. doi: 10.1145/1539024.1508945.

[22] Mark Guzdial. “A Media Computation Course for Non-Majors”. In: Proceedings
of the 8th Annual Conference on Innovation and Technology in Computer Science
Education. Thessaloniki Greece: ACM, June 2003, pages 104–108. isbn: 978-1-
58113-672-2. doi: 10.1145/961511.961542.

[23] Mark Guzdial. “Exploring Hypotheses about Media Computation”. In: Pro-
ceedings of the Ninth Annual International ACM Conference on International
Computing Education Research. San Diego San California USA: ACM, Aug. 2013,
pages 19–26. isbn: 978-1-4503-2243-0. doi: 10.1145/2493394.2493397.

[24] Brian Harvey. Computer Science Logo Style: Beyond Programming. 2nd edition.
Volume 3. Exploring with LOGO. Cambridge, MA, USA: MIT Press, Mar. 1997.
isbn: 978-0-262-58150-9.

[25] Brian Harvey. Computer Science Logo Style: Symbolic Computing. 2nd edition.
Volume 1. Exploring with LOGO. Cambridge, MA, USA: MIT Press, Mar. 1997.
isbn: 978-0-262-58148-6.

[26] Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. “SNAP!
(Build Your Own Blocks)”. In: Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education. Denver Colorado USA: ACM, Mar. 2013,
pages 759–759. isbn: 978-1-4503-1868-6. doi: 10.1145/2445196.2445507.

14:44

https://doi.org/10.1145/1631687.1596561
https://doi.org/10.1145/1631687.1596561
https://doi.org/10.1145/1538788.1538803
https://doi.org/10.14236/ewic/FP1995.6
https://doi.org/10.1145/1539024.1508945
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/2445196.2445507

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

[27] Peter Henderson. “Functional Geometry”. In: Proceedings of the 1982 ACM
Symposium on LISP and Functional Programming. LFP ’82. New York, NY, USA:
Association for Computing Machinery, Aug. 1982, pages 179–187. isbn: 978-0-
89791-082-8. doi: 10.1145/800068.802148.

[28] Reka Kassai, Judit Futo, Zsolt Demetrovics, and Zsofia K. Takacs. “A Meta-
Analysis of the Experimental Evidence on the Near- and Far-Transfer Effects
Among Children’s Executive Function Skills”. In: Psychological Bulletin 145.2
(2019), pages 165–188. issn: 1939-1455(Electronic),0033-2909(Print). doi:
10.1037/bul0000180.

[29] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. “Code Quality Issues in
Student Programs”. In: Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education. ITiCSE ’17. New York, NY, USA:
ACM, June 2017, pages 110–115. isbn: 978-1-4503-4704-4. doi: 10 . 1145 /
3059009.3059061.

[30] Shing-On Leung. “A Comparison of Psychometric Properties and Normality in 4-,
5-, 6-, and 11-Point Likert Scales”. In: Journal of Social Service Research 37.4 (July
2011), pages 412–421. issn: 0148-8376. doi: 10.1080/01488376.2011.580697.

[31] Colleen M. Lewis. “The Importance of Students’ Attention to Program State:
A Case Study of Debugging Behavior”. In: Proceedings of the Ninth Annual
International Conference on International Computing Education Research. ICER
’12. New York, NY, USA: ACM, Sept. 2012, pages 127–134. isbn: 978-1-4503-
1604-0. doi: 10.1145/2361276.2361301.

[32] Aleksi Lukkarinen and Juha Sorva. “Classifying the Tools of Contextualized
Programming Education and Forms of Media Computation”. In: Proceedings of
the 16th Koli Calling International Conference on Computing Education Research.
Koli Finland: ACM, Nov. 2016, pages 51–60. isbn: 978-1-4503-4770-9. doi:
10.1145/2999541.2999551.

[33] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. “The Scratch Programming Language and Environment”. In: ACM
Transactions on Computing Education 10.4 (Nov. 2010), pages 1–15. issn: 1946-
6226, 1946-6226. doi: 10.1145/1868358.1868363.

[34] John H. Maloney and Randall B. Smith. “Directness and Liveness in the Morphic
User Interface Construction Environment”. In: Proceedings of the 8th Annual ACM
Symposium on User Interface and Software Technology. Pittsburgh Pennsylvania
USA: ACM, Dec. 1995, pages 21–28. isbn: 978-0-89791-709-4. doi: 10.1145/
215585.215636.

[35] Melissa Høegh Marcher, Ingrid Maria Christensen, Paweł Grabarczyk, Therese
Graversen, and Claus Brabrand. “Computing Educational Activities Involving
People Rather Than Things Appeal More to Women (CS1 Appeal Perspective)”.
In: Proceedings of the 17th ACM Conference on International Computing Education
Research. Virtual Event USA: ACM, Aug. 2021, pages 145–156. isbn: 978-1-
4503-8326-4. doi: 10.1145/3446871.3469761.

14:45

https://doi.org/10.1145/800068.802148
https://doi.org/10.1037/bul0000180
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1080/01488376.2011.580697
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/3446871.3469761

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

[36] Karl Maton. “Semantic Waves: Context, Complexity and Academic Discourse”.
In: Accessing Academic Discourse. 1st. Routledge, Nov. 2019, page 27. isbn:
978-0-429-28072-6. doi: 10.4324/9780429280726-3.

[37] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. “Habits of
Programming in Scratch”. In: Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education. ITiCSE ’11. New
York, NY, USA: ACM, June 2011, pages 168–172. isbn: 978-1-4503-0697-3. doi:
10.1145/1999747.1999796.

[38] Bartosz Milewski. Category Theory for Programmers. Blurb, Aug. 2019. isbn:
978-0-464-24387-8.

[39] Richard Noss. “Children’s Learning of Geometrical Concepts through Logo”.
In: Journal for Research in Mathematics Education 18.5 (1987), pages 343–362.
issn: 0021-8251. doi: 10.2307/749084. JSTOR: 749084.

[40] Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas. USA:
Basic Books, Inc., 1980. isbn: 978-0-465-04627-0.

[41] Seymour A. Papert. A Computer Laboratory for Elementary Schools. Technical
report AIM-246 / LOGO Memo 1. MIT, Oct. 1971. url: https://dspace.mit.edu/
handle/1721.1/5834.

[42] Seymour A. Papert and Cynthia Solomon. Twenty Things To DoWith A Computer.
Technical report AIM-248 / LOGOMemo 3. MIT, June 1971. url: https://dspace.
mit.edu/handle/1721.1/5836.

[43] David Lorge Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules”. In: Communications of the ACM 15.12 (Dec. 1972), pages 1053–1058.
issn: 0001-0782. doi: 10.1145/361598.361623.

[44] Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. “Tips for Creating
a Block Language with Blockly”. In: 2017 IEEE Blocks and Beyond Workshop
(B&B). Oct. 2017, pages 21–24. doi: 10.1109/BLOCKS.2017.8120404.

[45] Roy D. Pea. Logo Programming and Problem Solving. [Technical Report No. 12.]
Apr. 1983. url: https://eric.ed.gov/?id=ED319371 (visited on 2025-02-07).

[46] Roy D. Pea and D. Midian Kurland. “On the Cognitive Effects of Learning
Computer Programming”. In:New Ideas in Psychology 2.2 (Jan. 1984), pages 137–
168. issn: 0732-118X. doi: 10.1016/0732-118X(84)90018-7.

[47] David N. Perkins and Gavriel Salomon. “Transfer of Learning”. In: International
Encyclopedia of Education. Volume 2. 1992, pages 6452–6457. isbn: 978-0-08-
041046-3.

[48] Leo Porter and Beth Simon. “Retaining Nearly One-Third More Majors with
a Trio of Instructional Best Practices in CS1”. In: Proceeding of the 44th ACM
Technical Symposium on Computer Science Education. Denver Colorado USA:
ACM, Mar. 2013, pages 165–170. isbn: 978-1-4503-1868-6. doi: 10.1145/2445196.
2445248.

14:46

https://doi.org/10.4324/9780429280726-3
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.2307/749084
http://www.jstor.org/stable/749084
https://dspace.mit.edu/handle/1721.1/5834
https://dspace.mit.edu/handle/1721.1/5834
https://dspace.mit.edu/handle/1721.1/5836
https://dspace.mit.edu/handle/1721.1/5836
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/BLOCKS.2017.8120404
https://eric.ed.gov/?id=ED319371
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1145/2445196.2445248
https://doi.org/10.1145/2445196.2445248

Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias Hauswirth

[49] Casey Reas and Ben Fry. “Processing: Programming for the Media Arts”. In: AI
& SOCIETY 20.4 (Sept. 2006), pages 526–538. issn: 1435-5655. doi: 10.1007/
s00146-006-0050-9.

[50] Stephen K. Reed, George W. Ernst, and Ranan Banerji. “The Role of Analogy in
Transfer between Similar Problem States”. In: Cognitive Psychology 6.3 (July
1974), pages 436–450. issn: 0010-0285. doi: 10.1016/0010-0285(74)90020-6.

[51] Eric Roberts and Keith Schwarz. “A Portable Graphics Library for Introductory
CS”. In: Proceedings of the 18th ACM Conference on Innovation and Technology in
Computer Science Education - ITiCSE ’13. Canterbury, England, UK: ACM Press,
2013, page 153. isbn: 978-1-4503-2078-8. doi: 10.1145/2462476.2465590.

[52] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, andMatthias Felleisen.
“Transferring Skills at Solving Word Problems from Computing to Algebra
Through Bootstrap”. In: Proceedings of the 46th ACM Technical Symposium on
Computer Science Education - SIGCSE ’15. Kansas City, Missouri, USA: ACM Press,
2015, pages 616–621. isbn: 978-1-4503-2966-8. doi: 10.1145/2676723.2677238.

[53] Robert H. Sloan and Patrick Troy. “CS 0.5: A Better Approach to Introductory
Computer Science for Majors”. In: ACM SIGCSE Bulletin 40.1 (Mar. 2008),
pages 271–275. issn: 0097-8418. doi: 10.1145/1352322.1352230.

[54] Wayne Stevens, Glenford Myers, and Larry Constantine. “Structured Design”.
In: IBM Systems Journal 13.2 (1974), pages 115–139. issn: 0018-8670. doi:
10.1147/sj.132.0115.

[55] Gail M. Sullivan and Richard Feinn. “Using Effect Size—or Why the P Value
Is Not Enough”. In: Journal of Graduate Medical Education 4.3 (Sept. 2012),
pages 279–282. issn: 1949-8349. doi: 10.4300/JGME-D-12-00156.1.

[56] The Pyret Crew. The Pyret Programming Language. url: http://pyret.org/
(visited on 2024-07-03).

[57] Bruce Thompson. Best Practices in Quantitative Methods. SAGE Publications,
Inc., 2008. isbn: 978-1-4129-9562-7. doi: 10.4135/9781412995627.

[58] Jeannette M. Wing. “Computational Thinking”. In: Communications of the ACM
49.3 (Mar. 2006), pages 33–35. issn: 0001-0782. doi: 10.1145/1118178.1118215.

[59] Huiping Wu and Shing-On Leung. “Can Likert Scales Be Treated as Interval
Scales?—A Simulation Study”. In: Journal of Social Service Research 43.4 (Aug.
2017), pages 527–532. issn: 0148-8376. doi: 10.1080/01488376.2017.1329775.

14:47

https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1016/0010-0285(74)90020-6
https://doi.org/10.1145/2462476.2465590
https://doi.org/10.1145/2676723.2677238
https://doi.org/10.1145/1352322.1352230
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.4300/JGME-D-12-00156.1
http://pyret.org/
https://doi.org/10.4135/9781412995627
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1080/01488376.2017.1329775

Two Approaches for Programming Education in the Domain of Graphics: An Experiment

About the authors

Luca Chiodini is a PhD student at the LuCE research lab at Uni-
versità della Svizzera italiana. Contact: luca.chiodini@usi.ch.

https://orcid.org/0000-0002-2712-9248

Juha Sorva is a Senior University Lecturer in Computer Science
at Aalto University. His research interests include programming
education and instructional design. His other interests include
Dr. Pepper Zero and the etymology of the word “aftermath.” Con-
tact: juha.sorva@aalto.fi.

https://orcid.org/0009-0003-1727-1317

Arto Hellas is a Senior University Lecturer at Aalto University. His
current research interests include understanding and improving
teaching and learning in digital and hybrid learning environments.
He is also a fan of dad jokes. Contact: arto.hellas@aalto.fi.

https://orcid.org/0000-0001-6502-209X

Otto Seppälä is a University Lecturer at Aalto University. Contact:
otto.seppala@aalto.fi.

https://orcid.org/0000-0003-4694-9580

Matthias Hauswirth is an Associate Professor leading the LuCE
research lab at Università della Svizzera italiana. Contact: matthias.
hauswirth@usi.ch.

https://orcid.org/0000-0001-5527-5931

14:48

mailto:luca.chiodini@usi.ch
https://orcid.org/0000-0002-2712-9248
mailto:juha.sorva@aalto.fi
https://orcid.org/0009-0003-1727-1317
mailto:arto.hellas@aalto.fi
https://orcid.org/0000-0001-6502-209X
mailto:otto.seppala@aalto.fi
https://orcid.org/0000-0003-4694-9580
mailto:matthias.hauswirth@usi.ch
mailto:matthias.hauswirth@usi.ch
https://orcid.org/0000-0001-5527-5931

	1 Introduction
	2 Related Work
	2.1 Graphics and Programming Education
	2.2 Graphics Libraries for Beginners
	2.2.1 Canvas-Based Graphics
	2.2.2 Turtle Graphics
	2.2.3 Compositional Graphics

	2.3 Evaluations of Graphics-Based Approaches — And the Challenge of Transfer
	2.4 Compositional Graphics Approaches Should Have Potential for Conceptual Transfer

	3 Methodology
	3.1 Procedure
	3.2 Context and Participants
	3.3 Pre-Survey
	3.4 Teaching Intervention
	3.4.1 Interplay Between Pedagogy and Library
	3.4.2 Lessons' Content

	3.5 Post-Survey
	3.6 Post-Test
	3.6.1 Q1 to Q6: Multiple-Choice Questions on Programming
	3.6.2 Q7 to Q9: Programming Tasks in the Graphics Domain
	3.6.3 Tracing (H2a)
	3.6.4 Writing (H2b)
	3.6.5 Modifying (H2c)

	3.7 Analysis

	4 Results
	4.1 Pre-Survey
	4.2 Transfer to Programming Concepts (H1)
	4.3 Programming Tasks (H2)
	4.3.1 Tracing (H2a)
	4.3.2 Writing (H2b)
	4.3.3 Modifying (H2c)

	4.4 Engagement and Perceived Learning (H3)

	5 Discussion
	5.1 Student Engagement Was High
	5.2 Differences Between Groups Were Scarce, With One Exception
	5.2.1 The PyTamaro Group Did Better on Their Tracing Task
	5.2.2 Other Differences Were Largely Absent

	5.3 Question Design and Conceptual Transfer
	5.3.1 Staying Clear From `Teaching to the Test'
	5.3.2 Transfer to Isomorphic Programs
	5.3.3 Transfer, Even to Isomorphic Tasks, Can Fail

	6 Threats to Validity
	7 Conclusion
	A Pre-Survey
	B Teaching Intervention
	B.1 Mini-Lesson 1 (of 4)
	B.2 Mini-Lesson 2 (of 4)
	B.3 Mini-Lesson 3 (of 4)
	B.4 Mini-Lesson 4 (of 4)

	C Post-Survey
	D Post-Test Multiple-Choice Questions
	D.1 Question 1
	D.2 Question 2
	D.3 Question 3
	D.4 Question 4
	D.5 Question 5
	D.6 Question 6

	References
	About the authors

