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Abstract

Background and Context Misconceptions in programming have

been studied extensively, but most research focuses on uncover-

ing and assessing misconceptions in students. When teachers are

involved, it is usually only to elicit their perspective on miscon-

ceptions in their students. However, there is no guarantee that

teachers do not hold misconceptions themselves. Detecting the

possible presence of misconceptions in teachers is a crucial step

for improving their content knowledge and pedagogical content

knowledge, which benefits hundreds of students each year.

Objectives The study aims to answer the following research ques-

tions: Which programming misconceptions do teachers themselves

hold? Are teachers aware of these misconceptions, do they ob-

serve them in their students, and do they consider them important?

Are there differences in the teachers’ perspectives, depending on

whether they hold misconceptions themselves?Which strategies do

teachers employ to deal with the misconceptions in their students?

Method We conducted an extensive, 55-page-long survey of upper-

secondary informatics teachers who teach programming in Python.

The survey focused on 16 Python misconceptions reported in prior

research that involve concepts covered in the teachers’ upper-

secondary courses. The first part of the survey assessed whether the

teachers held misconceptions, probing their knowledge with two

related questions for each misconception and asking for mandatory

explanations. The second part of the survey asked teachers whether

they previously knew about the misconceptions, how prevalent

they were in their students, how important they believe them to be,

and how they could tell that their students hold the misconceptions.

Findings The number of teachers who gave incorrect answers on

programming misconception questions varies considerably by mis-

conception, ranging from 3% to 40%. Most teachers report being

familiar with the misconceptions that were part of the study, con-

sider them rather important, and have observed them at least once

in their students. Teachers who answered correctly consistently

rate misconceptions as more important and more prevalent among

their students. Strategies to deal with the misconceptions include

ways to prevent, detect, and fix them.

Implications When teachers hold misconceptions, all of their

students can be affected. This study highlights the importance of

professional development for teachers so that they can both correct
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their own misconceptions and recognize them in their students,

ultimately leading to better programming education. Our results

also caution computing education researchers against assuming

that teachers are free from misconceptions. We recommend that

future studies include an assessment of the participants’ knowledge,

to ensure that findings are properly contextualized.

CCS Concepts

• Social and professional topics→ Computing education.

Keywords

introductory programming, Python, misconceptions, teachers

ACM Reference Format:

Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth. 2025. Surveying

Upper-Secondary Teachers on Programming Misconceptions. In ACM Con-
ference on International Computing Education Research V.1 (ICER 2025 Vol.
1), August 3–6, 2025, Charlottesville, VA, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3702652.3744227

1 Introduction

When thinking about misconceptions, the first thought often goes

to the struggling student who is having a hard time mastering

new concepts. A second thought may then focus on the teacher, to

consider the benefits of teachers being aware of misconceptions

that their students can hold, so teachers can develop appropriate

pedagogies. Rarely does one consider the possibility that teachers

themselves may hold some of those misconceptions. The possibility

of teachers holding misconceptions as well should not appear too

surprising: after all, every teacher was once a student learning the

very concepts they now teach.

As computer science has increasingly become a mandatory part

of the school curriculum, the need for training new teachers has

risen all over the world in the past few years. Several countries

created various training programs to meet this demand [5, 13].

Due to time and financial constraints, these training efforts do

not always fully achieve the intended learning goals. As a result,

teachers may enter the classroom without extensive and adequate

preparation. Teachers themselves sometimes voice concerns about

not feeling comfortable with their preparation [32].

Research in computing education has extensively focused on

misconceptions, dedicating a lot of attention to students’ difficulties

in introductory programming [23]. Prior research has also inves-

tigated the teachers’ opinions on the importance and prevalence

of misconceptions in introductory programming courses [4, 26].

In this work, we investigate teachers’ programming knowledge

and use this data to weigh their opinions on the misconceptions.
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We conduct an extensive, 55-page-long survey with 𝑁 = 97 upper-

secondary informatics teachers
1
.

We ask the following research questions:

RQ1 Which previously reported programming misconceptions do

upper-secondary informatics teachers hold?

RQ2 What are the teachers’ perspectives on those misconceptions:

Are they aware of them? How frequently do they observe

them in their students? How important do they perceive

them to be?

RQ3 Are there differences in the teachers’ perspectives, depending

on whether they hold misconceptions themselves?

RQ4 Which strategies do teachers employ to deal with the mis-

conceptions in their students?

2 Background and Related Work

In 1986, Shulman proposed three categories to structure the knowl-

edge of teachers with respect to the content: “subject matter con-

tent knowledge”, “pedagogical content knowledge”, and “curricular

knowledge”. First, it is argued that teachers should possess excellent

subject matter content knowledge: teachers should have a level of

understanding “at least equal to that of his or her lay colleague, the

mere subject matter major” and “not only understand that some-

thing is so” but also “why it is so” [28]. The second category, termed

pedagogical content knowledge (PCK), includes various techniques

to explain content so that it is “comprehensible to others”, as well

as “what makes the learning of specific topics easy or difficult” [28].

PCK also includes knowledge of students’ preconceptions, which of-

ten are misconceptions. This knowledge is helpful to assist learners

in reorganizing their understanding.

2.1 Programming Misconceptions in

Computing Education Research

Computing education research has a long history of investigating

misconceptions (e.g., [20, 29]). Lewis et al. [23] provide an overview

of research on misconceptions in computer science. In this work,

we direct our attention specifically to programming misconceptions.
In 2017, Qian and Lehman [27] conducted a literature review that

attempted to systematize the broad perspective embraced by the

research community over decades. This extends to debating the very

definition of what constitutes a misconception, which the authors

suggest could be defined as “an error in conceptual understanding”.

More recently, Chiodini et al. [10] proposed a definition for a

subset of programming misconceptions, which they term “program-

ming language misconceptions” and define as “statements that can

be disproved by reasoning entirely based on the syntax and/or se-

mantics of a programming language”. They published an online

inventory
2
of misconceptions divided by programming language,

to acknowledge that some claims that are wrong in one language

may be correct in another. Misconceptions are presented with “refu-

tation texts” and “refutation images”, where the correct and the

incorrect claims are juxtaposed. Keeping these two parts together,

one that describes a common misconception, and right next to it

1
Throughout the paper, we primarily use the terms “upper-secondary teachers” and “in-

formatics”, but some readers may find respectively the terms “high school teachers” and

“computer science” more standard. Within this work, the terms are interchangeable.

2
https://progmiscon.org

one that refutes the incorrect conception and instead presents the

correct one, has been shown to be helpful to induce conceptual

change [30]. Theories of conceptual change started with Posner

et al., acknowledging that “learning is the result of the interaction

between what the student is taught and his current ideas” [25]. The

study of misconceptions is thus important for understanding the

incorrect conceptions that learners hold and need to overcome.

Lu and Krishnamurthi [24] acknowledge the language specificity

of misconceptions but identify the existence of a common set of core

features that are shared by many modern programming languages,

and that can be used to groundmisconceptions in it. They developed

an instrument consisting of multiple-choice questions with curated

distractors, and then used it to assess students’ understanding. The

study noted that the misconceptions are rather widespread, even

among students in their third or fourth year at a selective university.

2.2 Teachers and Misconceptions

Research on misconceptions in computing education typically fo-

cuses on students. When teachers are brought into the picture,

they are usually asked about their students. As an example, Qian

et al. [26] surveyed 44 high school teachers of an introductory pro-

gramming course in Python in the United States. Teachers were

asked to rate how often they encountered each misconception, the

perceived importance, and how confident the teacher is in address-

ing the misconception with their students. The study included 37

misconceptions, cataloged under five different topics. The authors

suggest that some teachers struggled to understand the misconcep-

tion statements, possibly due to limited content knowledge. The

study did not explore whether teachers themselves held these mis-

conceptions, nor did it collect explanations that could clarify their

difficulties in understanding the questions.

However, relying on the teachers’ judgments without any form

of assurance can produce misleading results. Brown and Altadmri

[4] showed how the teachers’ beliefs about the kind and prevalence

of mistakes students make when programming in Java do not match

the evidence offered by analyzing a large repository of code written

by students. To the authors’ surprise, teachers with more years of

experience (in teaching overall, in teaching programming, and in

teaching programming in Java) did not give better predictions for

the ranking of errors.

Chiodini et al. [9] describe a tool that leverages progmiscon.org’s

refutation texts to build lightweight assessments (called “conceptual

checks”) on programming misconceptions for teachers, but they

did not conduct any study.

Some studies on teachers’ knowledge have been conducted in the

related domain of mathematics. Brown and Bergman [6] conducted

a short survey with pre-service teachers to test their understanding

of the concept of variables. Teachers were tested with items target-

ing known misconceptions in middle school students. The results

demonstrated that misconceptions are also pervasive in teachers,

with only 14 % of them answering correctly to all the four questions.

Even [16] tested the understanding of functions in mathematics

teachers for secondary education during the final year of their

training. Many teachers were found to have inadequate concep-

tions of functions that went beyond outdated definitions. Teachers

were asked to help hypothetical students that were struggling on

https://progmiscon.org
https://progmiscon.org
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those concepts. Interviews with teachers revealed “a tendency to

provide the student with the ‘vertical line test’ as a rule that the

student can follow and get the right answers (without needing to

understand)” [16].

The results of these studies may be attributed to each study’s

specific characteristics, but considered together they suggest the

need to assess teachers’ understanding to both recognize areas

of knowledge that need to be improved and put into the right

perspective the observations that come from teachers.

3 Methodology

This section describes in detail the methodology of our study, which

consists of an extensive 55-page survey of upper-secondary teachers

in Switzerland.

3.1 Context and Participants

We aimed to recruit participants among upper-secondary informat-

ics teachers in Switzerland, where the mandatory upper-secondary

informatics courses taught in the different cantons involve a signif-

icant part of programming, usually in Python.

We reached out directly to teachers who either participated in

a national training program to prepare them to teach computer

science in high school, or who had previously expressed interest

in participating in research studies. The Swiss Association for In-

formatics in Education (SVIA-SSIE-SSII) also offered to contact its

members (approximately 300 people who are predominantly upper-

secondary informatics teachers), and pointed them to a form where

interested teachers provided us with their contact details so we

could invite them to our study. Through both channels, we invited

170 teachers to participate in the online survey. A total of 𝑁 = 97

teachers completed the entire survey and were included in this

study.

We estimated each participant would take approximately 90 min-

utes to complete the study. All invited participants were promised a

remuneration for their participation in the form of public transport

tickets roughly equivalent to 1.5 hours of their salary. There was

no raffle: participants knew they could claim the remuneration if

they completed the entire survey before the deadline. To ensure the

anonymity of survey responses, information about the recipient

of the remuneration was collected in a separate form, the link to

which was provided at the end of the survey. The University Ethics

Committee approved this study.

3.2 Selection of Programming Misconceptions

Acknowledging the differences in how misconceptions have been

defined in the literature on programming education (Section 2.1), in

this work we adopt the definition suggested by Chiodini et al. [10]

to designate a specific subset of programming misconceptions. This

viewpoint considers as “programming language misconceptions”

the claims “that can be disproved by reasoning entirely based on

the syntax and/or semantics of a programming language” [10].

We focus on 16 previously documented Python programming

misconceptions. We started with all published Python misconcep-

tions on the progmiscon.org misconception inventory [10] and

we removed those related to programming concepts not typically

taught in the mandatory upper-secondary informatics course in

Switzerland. Table 1 lists all the 16 programming misconceptions in-

cluded in our study and shows the concepts they involve (improving

on the concept tags provided in the progmiscon.org inventory)
3
.

We gathered the set of misconceptions for our study from a

specific inventory, but several of them have also been documented

in earlier studies and research outputs, often under different names.

The four misconceptionsAssignCompares,NoReservedWords,

NoShortCircuit, ParenthesesOnlyIfArgument match respec-

tively the misconceptions documented by Hristova et al. [19] as

number 1 (“confusing the assignment operator with the comparison

operator”), 4 (“confusing ‘short-circuit’ evaluators with conven-

tional logical operators”), 8 (“using keywords as method or variable

names”) and 10 (“forgetting parentheses after a method call”).

Lu and Krishnamurthi [24] recently published a set of misconcep-

tions that are common across modern programming languages. The

misconception VariablesHoldExpressions corresponds to their

misconception “DefByRef”: “variable definitions alias variables”.

The misconception AssignmentCopiesObject, which claims that

an assignment does not copy the reference to the object but the

object itself, corresponds to their “DefsCopyStructs”: “variable defi-

nitions copy structures recursively”. “DefCopyStructs” was one of

the most widespread misconceptions reported by Lu and Krishna-

murthi [24], with 67 % of students asserting that it was the actual

behavior of the language.

The misconception VariablesHoldExpressions is a well-docu-

mented novice difficulty, with evidence dating back to Du Boulay

[14] in 1986 (“variable holds an unevaluated expression”).

3.3 Survey

The survey was administered online and was structured as shown in

Figure 1. After the informed consent and the demographic questions,

the core of the survey consists of two main parts. Each of the two

main parts started with a page to introduce the content and ended

with a page that asked for general feedback. The entire survey

consisted of 55 pages and was configured so that participants could

not navigate back to prior pages to modify their answers. The

complete version of the survey, which includes all the questions in

full, is available in the online appendix [7].

3.3.1 BackgroundQuestions. After getting the consent from par-

ticipants to include their answers in this study, we asked questions

to understand their background in teaching at large and teaching

programming specifically.

We asked teachers questions to characterize their background,

such as in which years of school they are teaching programming,

whether they are teaching only the mandatory course or also elec-

tive ones, how many hours of informatics per week they are teach-

ing, and how many years of teaching experience they have overall

and specifically in teaching informatics.

3.3.2 Part 1: Assessment. The core of Part 1 consisted of 32 pages,

administered in random order. Each of the 16 misconceptions was

featured on two pages. For each misconception, we used two differ-

ent types of questions.

3
We provide a brief interactive tutorial to explore the 16 misconceptions included in

this study at https://pytamaro.si.usi.ch/curricula/luce/misconceptions.

https://progmiscon.org
https://progmiscon.org
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https://progmiscon.org/misconceptions/Python/NoReservedWords
https://progmiscon.org/misconceptions/Python/NoShortCircuit
https://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument
https://progmiscon.org/misconceptions/Python/VariablesHoldExpressions
https://progmiscon.org/misconceptions/Python/AssignmentCopiesObject
https://progmiscon.org/misconceptions/Python/VariablesHoldExpressions
https://pytamaro.si.usi.ch/curricula/luce/misconceptions
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Table 1: The 16 studied misconceptions and their coverage of programming concepts.
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AssignCompares ✓ ✓ ✓ ✓ ✓ ✓ ✓

AssignmentCopiesObject ✓ ✓ ✓

ComparisonWithBoolLiteral ✓ ✓ ✓ ✓ ✓ ✓

ConditionalIsSeqence ✓ ✓

DeferredReturn ✓ ✓ ✓ ✓ ✓

IfIsLoop ✓ ✓ ✓ ✓

MapToBooleanWithIf ✓ ✓ ✓ ✓ ✓

MultipleValuesReturn ✓ ✓ ✓ ✓ ✓ ✓ ✓

NoAtomicExpression ✓ ✓ ✓ ✓ ✓ ✓

NoReservedWords ✓

NoShortCircuit ✓ ✓ ✓ ✓ ✓

OutsideInFunctionNesting ✓ ✓ ✓ ✓ ✓

ParenthesesOnlyIfArgument ✓ ✓ ✓

ReturnCall ✓ ✓ ✓ ✓ ✓

ReturnUnwindsMultipleFrames ✓ ✓ ✓ ✓

VariablesHoldExpressions ✓ ✓ ✓ ✓ ✓

Introduction &
Background estions

3 pages

Multiple-Choice estions with Explanations
on 16 Misconceptions

32 Pages (Random Order) + 2

Part 1: Assessment Part 2: Teaching Practice

estions about Perspective
on 16 Misconceptions

16 Pages (Random Order) + 2

MCQ
Illustrated Refutation Text

MCQ
Code Example

Figure 1: Structure and sequence of the 55-page-long survey.

(a) Question for misconception DeferredReturn: the refutation

text is paired with an illustration.

(b) Question for misconception ParenthesesOnlyIfArgument: the

two options refer to a example code snippet.

Figure 2: Examples of the two question types used in Part 1 for each misconception.

https://progmiscon.org/concepts/assignment/Python/
https://progmiscon.org/concepts/boolean/Python/
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https://progmiscon.org/concepts/control-flow/Python/
https://progmiscon.org/concepts/equality/Python/
https://progmiscon.org/concepts/expression/Python/
https://progmiscon.org/concepts/function/Python/
https://progmiscon.org/concepts/literal/Python/
https://progmiscon.org/concepts/loop/Python/
https://progmiscon.org/concepts/name/Python/
https://progmiscon.org/concepts/operator/Python/
https://progmiscon.org/concepts/return/Python/
https://progmiscon.org/concepts/statement/Python/
https://progmiscon.org/concepts/value/Python/
https://progmiscon.org/concepts/variable/Python/
https://progmiscon.org/misconceptions/Python/AssignCompares
https://progmiscon.org/misconceptions/Python/AssignmentCopiesObject
https://progmiscon.org/misconceptions/Python/ComparisonWithBoolLiteral
https://progmiscon.org/misconceptions/Python/ConditionalIsSequence
https://progmiscon.org/misconceptions/Python/DeferredReturn
https://progmiscon.org/misconceptions/Python/IfIsLoop
https://progmiscon.org/misconceptions/Python/MapToBooleanWithIf
https://progmiscon.org/misconceptions/Python/MultipleValuesReturn
https://progmiscon.org/misconceptions/Python/NoAtomicExpression
https://progmiscon.org/misconceptions/Python/NoReservedWords
https://progmiscon.org/misconceptions/Python/NoShortCircuit
https://progmiscon.org/misconceptions/Python/OutsideInFunctionNesting
https://progmiscon.org/misconceptions/Python/ParenthesesOnlyIfArgument
https://progmiscon.org/misconceptions/Python/ReturnCall
https://progmiscon.org/misconceptions/Python/ReturnUnwindsMultipleFrames
https://progmiscon.org/misconceptions/Python/VariablesHoldExpressions
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“Illustrated refutation” questions (Figure 2a) are inspired by the

images published on the progmiscon.org inventory. They contain

the refutation texts—correct and incorrect claims—paired with illus-

trations that we redrew to improve clarity and consistency. The two

contrasting illustrations depict, respectively, the correct conception

and the misconception. The illustrations include code snippets, an-

notations, and notional-machine-based diagrams such as memory

diagrams. They reflect what a teacher could draw on a whiteboard

to explain a misconception. They are inspired by the notional ma-

chines documented by Fincher et al. [17], such as “Control Flow as

Graph” (Figure 2a) and “Expression as Tree” (Figure 5a).

Code example questions (Figure 2b) include a small code example

and a correct and incorrect statement about the code. They often

are code tracing questions, but sometimes they are questions about

other aspects (e.g., the syntax).

Both question types are multiple-choice questions with two pos-

sible options, one representing the incorrect conception (miscon-

ception), the other representing the correct conception. The two

options are presented in random order. Each question asks partici-

pants to pick the option that describes the correct conception.

Prior research has noted that multiple-choice questions can lead

to imprecise measurements [21], because participants can guess the

answer or misinterpret the question. For these reasons, to increase

the validity of our assessment, each multiple-choice question was

accompanied by amandatory free-text explanation field. Below both

question types, teachers were asked to “Briefly explain why:” in a

text field. (This would appear right below Figure 2a and Figure 2b;

we omit it here for space reasons.)

3.3.3 Part 2: Teaching Practice. The core of Part 2 included 16 pages,

one page for eachmisconception. In this part as well, the pages were

presented in random order. As with the entire survey, participants

could not navigate back, which means that they had to answer

the assessment questions that tested their understanding before

starting with Part 2.

Each page on Part 2 presented a misconception as shown on

progmiscon.org and asked the following questions:

• Did you know this is a misconception your students might

have? [“Yes”, “No”];

• Did you observe this misconception in your students? [“Fre-

quently”, “Multiple times”, “At least once”, “Never”, “I don’t

know (I might have had that misconception myself)”];

• In your opinion, how important is it to detect and fix this

misconception in your students? [“Important”, “Somewhat

important”, “Not so important”, “Not important”, “I’m not

sure”];

• How could you tell your student(s) held this misconception?

[Free-text response].

3.4 Analysis

We automatically assess the correctness of the answers to the

multiple-choice questions in Part 1 (Section 3.3.2) with a binary

outcome. Answering those questions was mandatory. We manually

assess the explanations following the procedure suggested by Chio-

dini and Hauswirth [8] to cross-check explanations with multiple-

choice answers. Adamoli [1] also followed a similar approach to

validate a concept inventory of programming misconceptions: stu-

dents were asked to clearly explain why they chose a particular

option in the multiple-choice question, and experts decided on the

actual presence of a misconception based on these explanations.

We classify each explanation into one of the following groups:

“correct”, when the explanation showed that the participant under-

stood the question and explained the correct answer in a reasonably

sufficient way; “imprecise”, when the explanation provided insuf-

ficient details to assess whether the participant holds the correct

conception (e.g., because they misunderstood the question and fo-

cused their explanation on a different aspect), “wrong”, when the

explanation clearly showed that the participant holds the wrong

conception, and “missing” in the remaining cases (e.g., a participant

stating that they did not know the answer and they guessed, or an

explanation containing only gibberish).

We then combine the assessment of the answer of the multiple-

choice question and the corresponding explanation to determine

the final correctness of an answer. An answer is correct when either

(1) the multiple-choice answer is correct, and the explanation is

correct or imprecise; (2) the multiple-choice answer is incorrect,

but the explanation is correct. In the remaining cases, the answer

is considered wrong (i.e., the multiple-choice answer is correct but

the explanation is wrong or missing, or the multiple-choice answer

is wrong and the explanation is imprecise, wrong, or missing).

For the second part of our survey (Section 3.3.3), we answer the

second research question analyzing the distribution (e.g., to find

the mode) of the options for questions that use a Likert or binary

scale.

To answer RQ3, we analyze data in two ways. On one hand,

we discard the “I don’t know” option and interpret the ratings as

interval data on a four-point scale from 1 to 4, noting that there is

no consensus on whether it is acceptable to do so and that this treat-

ment hides important nuances [2]. On the other hand, we compare

the ratings given by two groups of teachers, those who gave correct

and wrong answers, by conducting a two-tailed Mann–Whitney 𝑈

test for independent samples. This non-parametric test is appropri-

ate for our data, as it properly accounts for the ordinal nature of the

ratings [18]. We adopt the standard significance level 𝛼 = 0.05 and

compute the effect size using Cliff’s 𝑑 , which measures how often

a score from one group is higher than a score from the other [12].

RQ4 calls for a qualitative exploration. We analyze the answers

provided by the teachers to the question with a free-text response in

the second part of the survey: “How could you tell your student(s)

held this misconception?”. We perform a thematic analysis [3, 22]

to identify common patterns across teachers and misconceptions.

We illustrate the themes with a description paired with quotes as

written by the teachers, after translating them into English where

necessary, adjusting the typography, correcting spelling errors, and

omitting details that may identify the author.

4 Results

We present the results of the study in the order of our research

questions. To answer the entire survey, teachers spent an average

of 112 minutes (excluding the bottom and top quartiles to remove

outliers). This is somewhat longer than what we anticipated but can

https://progmiscon.org
https://progmiscon.org


ICER 2025 Vol. 1, August 3–6, 2025, Charlottesville, VA, USA Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth

be explained by the large number of textual explanations required

in the survey.

4.1 Teacher Background

The vast majority of the 97 responding teachers reported teaching

in the 10th grade (95%) and 11th grade (84%). This corresponds

to the two years in which the mandatory programming course

typically takes place in Swiss high schools. A number of teachers

also work with older students, in elective courses: 35% of them

teach elective programming courses in the 12th grade and 23 % in

13th grade. Overall, 99 % of the respondents are currently teaching

a mandatory high school programming course and 31% teach at

least one elective programming course.

The responding teachers report quite an even distribution of

school hours of informatics taught per week, on average. 24% of

them are currently teaching less than 6 school hours of informatics

per week, 34 % from 6 to 12 school hours, 28 % from 12 to 18 weekly

school hours, and the remaining 14% more than that, up to 27

school hours per week.

The majority of the teachers (68%) are also currently teaching

other subjects. This is expected for our context, as a significant

fraction was already teaching a different school subject before

receiving training to teach informatics in upper-secondary. 57%

of the teachers reported studying in one of the 3 variants of the

national training program.

Participants reported an average length of their teaching career

of 12.2 years (minimum 2, maximum 32 years). Their experience

with teaching informatics was shorter, with an average of 6.2 years

(minimum 0, maximum 25 years). 52 % of teachers have been teach-

ing informatics for no more than four years.

31 % of teachers indicated female as a gender, 68 % male, and 1 %

preferred not to disclose such information.

4.2 Teacher Assessment on Misconceptions

(RQ1)

As described in the Methodology (Section 3), each of the 97 par-

ticipating teachers chose between two options for each of the 32

questions that targeted our 16 programming misconceptions. Giv-

ing an answer to the multiple-choice questions was mandatory.

Overall, 89 % of the answers were correct and 11 % were wrong. We

note a minimal difference between the two question types: answers

to multiple-choice questions in the illustrated refutation text format

were wrong 10 % of the times, while answers to questions using the

code example format were wrong in 13 % of the cases.

We then separately manually analyzed each of the 3 104 textual

explanations. Some explanations included a note from the teacher

indicating that they had already given an explanation for the same

question in the other format, which appeared earlier. The order of

the questions in the survey was fully randomized, so this reference

to an earlier question may be to either of the two question types.

We accommodated these requests by considering such earlier expla-

nations when assessing the one coming later. Overall, we classified

77% of the explanations as “Correct”, 11 % as “Imprecise”, 6 % as

“Wrong”, and the remaining 6 % as “Missing”.

We combined the automatic assessment of the multiple-choice

question and the manual assessment of the explanation to get a

more reliable, final assessment of the correctness of each answer

(details in Section 3.4). Overall, this led to a modest change of the

percentage of incorrect answers, which increased from 11% to 14 %.

These numbers lump together all the misconceptions and ob-

scure the large differences among them. Table 2 presents the data

grouping the assessment per each of the 16 programming miscon-

ceptions. The breakdown per misconception reveals larger changes

due to the explanations (from −10 to +15 percentage points change
in wrong answers). The non-negligible differences confirm the

necessity of augmenting multiple-choice questions with explana-

tions, as proposed by Chiodini and Hauswirth [8], to detect more

accurately which misconceptions teachers hold. In the final assess-

ment, wrong answers vary from 3 % of AssignCompares to 40 % of

NoAtomicExpression.

Figure 3 shows, for each of the 97 teachers, the misconceptions

they hold (i.e., the ones for which they answered incorrectly in at

least one of the two questions). On average, a teacher holds 3.3mis-

conceptions, with a standard deviation of ±2.7 misconceptions. As

Figure 3 illustrates, the misconceptions we detected are distributed

among the teachers, with a minimum of 0 and maximum of 12 mis-

conceptions, and are not concentrated only in a handful of teachers.

When considering the twomost frequently detectedmisconceptions

(NoAtomicExpression and ReturnUnwindsMultipleFrames),

only 16 % of all teachers are holding both misconceptions.

4.3 Teacher Perspectives on Misconceptions

(RQ2)

The second part of the survey was meant to elicit the teachers’

perspective on the programming misconceptions that were part

of the study. Teachers were asked to rate the importance of each

misconception and the prevalence among their students. We also

asked the teachers whether they were familiar with the existence

of each misconception. Table 3 shows the number of teachers who

selected each option. 10 out of 16 misconceptions were rated at the

highest level of importance by the relative majority of the teachers.

In terms of prevalence, all misconceptions have been seen at least

once by several teachers. The mode indicates 6 misconceptions seen

multiple times and 8 misconceptions as never seen.

The absolute majority of teachers reported being familiar with

13 of the 16 misconceptions included in our study, with a peak of

85 % for the AssignCompares misconception. NoAtomicExpres-

sion and ReturnUnwindsMultipleFrames were the two mis-

conceptions teachers were the least familiar with. The same two

misconceptions are also the ones with the highest percentage of

wrong answers in the assessment part of the survey (Section 4.2).

This suggests that a number of teachers do not know what is cor-

rect, and consequently do not know that the incorrect claim can

be a student misconception. Almost all teachers instead correctly

answered the questions targeting the third misconception of this

group, IfIsLoop. Most teachers report never having seen it in class,

but an overwhelming majority still considers it important.
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Table 2: For each misconception, the percentage of wrong answers on the multiple-choice question in the illustrated refutation

text type (Illustr. MCQ) and in the code example type (Code MCQ). The “Final” columns show the percentage of wrong answers

after combining the multiple-choice answer with the explanation (in parentheses, the difference in percentage points). In the

last column, the percentage of teachers with at least one wrong final answer (i.e., one or both question types have a wrong final

answer). This table and the subsequent ones are sorted by this last column.

Misconception Illustr. MCQ Illustr. Final Code MCQ Code Final Miscon. Final

NoAtomicExpression 18 % 33% (+15 pp) 21 % 31% (+10 pp) 40 %

ReturnUnwindsMultipleFrames 16 % 24% (+ 7 pp) 26 % 32% (+ 6 pp) 38 %

ConditionalIsSeqence 29 % 31% (+ 2 pp) 16 % 14% (− 2 pp) 35 %

NoShortCircuit 23 % 25% (+ 2 pp) 19 % 16% (− 2 pp) 31 %

MultipleValuesReturn 20 % 20% (+ 0 pp) 36 % 26% (−10 pp) 30 %

AssignmentCopiesObject 18 % 23% (+ 5 pp) 14 % 21% (+ 6 pp) 27 %

MapToBooleanWithIf 6 % 15% (+ 9 pp) 10 % 19% (+ 8 pp) 26 %

ComparisonWithBoolLiteral 8 % 14% (+ 6 pp) 16 % 14% (− 2 pp) 22 %

ReturnCall 2 % 8% (+ 6 pp) 8 % 14% (+ 6 pp) 20 %

ParenthesesOnlyIfArgument 0 % 5% (+ 5 pp) 12 % 12% (+ 0 pp) 15 %

NoReservedWords 6 % 10% (+ 4 pp) 4 % 6% (+ 2 pp) 14 %

OutsideInFunctionNesting 5 % 6% (+ 1 pp) 7 % 8% (+ 2 pp) 11 %

DeferredReturn 3 % 7% (+ 4 pp) 7 % 8% (+ 1 pp) 9 %

VariablesHoldExpressions 4 % 6% (+ 2 pp) 6 % 3% (− 3 pp) 8 %

IfIsLoop 1 % 1% (+ 0 pp) 2 % 3% (+ 1 pp) 4 %

AssignCompares 1 % 3% (+ 2 pp) 1 % 0% (− 1 pp) 3 %
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Figure 3: For each teacher, number of misconceptions (above) and the actual misconceptions (below) held.
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Table 3: Number of answers for the multiple choice questions about the importance, prevalence and familiarity of each

misconception (refer to Section 3.3.3 for the full version of the questions). The most selected option of each question is bold.

Importance Prevalence Familiar
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NoAtomicExpression 18 25 26 18 10 8 16 9 40 24 42 55

ReturnUnwindsMultipleFrames 34 26 15 11 11 3 12 11 54 17 45 52

ConditionalIsSeqence 51 28 8 5 5 16 34 16 21 10 78 19

NoShortCircuit 18 28 35 11 5 7 19 20 33 18 68 29

MultipleValuesReturn 32 34 23 5 3 3 24 19 32 19 61 36

AssignmentCopiesObject 46 28 9 6 8 13 35 13 18 18 74 23

MapToBooleanWithIf 10 38 26 17 6 18 37 15 15 12 73 24

ComparisonWithBoolLiteral 12 30 34 19 2 28 34 15 10 10 82 15

ReturnCall 11 17 30 34 5 18 21 23 24 11 60 37

ParenthesesOnlyIfArgument 68 17 8 2 2 33 30 18 14 2 81 16

NoReservedWords 46 25 21 4 1 9 21 37 26 4 83 14

OutsideInFunctionNesting 55 26 8 1 7 6 21 15 46 9 64 33

DeferredReturn 64 28 4 0 1 14 32 21 24 6 71 26

VariablesHoldExpressions 63 14 10 3 7 7 24 17 42 7 58 39

IfIsLoop 62 19 9 3 4 7 17 17 51 5 43 54

AssignCompares 71 19 5 1 1 30 38 14 10 5 85 12

4.4 Differences In Perspective Depending on

Correctness (RQ3)

To understand if and to what extent there are differences in how

teachers rate the misconceptions, depending on whether they them-

selves can correctly answer questions about them, we analyzed

separately the ratings expressed by the two groups. (As discussed

in Section 3.4, we remark that this analysis treats Likert scales as

interval data to be able to compute numerical averages, but doing

so hides important qualitative differences between the options.)

Teachers who gave incorrect answers to the misconception ques-

tions give an average rating of importance of 2.97 and a rating of

prevalence of 2.08. When we focus exclusively on the teachers who

gave correct answers, both ratings increase, to 3.11 for importance

and 2.32 for prevalence. Figure 4 shows the differences in the ratings

by misconception.

After separating the ratings into two groups, those given by the

teachers who answered correctly and those who answered incor-

rectly, we conducted two-tailed Mann-Whitney 𝑈 tests to check

whether one group expressed higher ratings than the other. Sta-

tistically significant differences are revealed: teachers who answer

correctly indicate that the misconceptions are more prevalent in

their students (𝑈 = 128810.5, 𝑝 < 0.001, effect size 𝑑 = 0.23) and

also consider the misconceptions more important (𝑈 = 110873.0,

𝑝 < 0.001, effect size 𝑑 = 0.15).

The differences persist also for the teacher’s familiarity with the

misconceptions. 73 % of the teachers who answered correctly the

assessment questions indicate being familiar with the misconcep-

tions, as opposed to only 54 % of those who answered wrongly. The

difference between groups is statistically significant (𝑈 = 160944.0,

𝑝 < 0.001, 𝑑 = 0.19).

4.5 Teachers’ Strategies to Deal With

Misconceptions (RQ4)

In the second part of the survey, we asked teachers how they could

tell their students held each misconception (Section 3.3.3). The

question aimed to elicit the strategies adopted by teachers to detect

misconceptions in their students. How teachers handle students’

struggles is an important component of pedagogical content knowl-

edge, but data from actual teachers is difficult to obtain [31].

Answering this question was not mandatory, as we considered

that some teachers have limited experience in teaching informat-

ics and others may hold the misconception themselves. Teachers

provided an answer in 76% of the cases, yielding a total of 1 184

texts.

The majority of the answers (61 %) did not contain useful infor-

mation. This is due to a large number of different reasons. Some

teachers misunderstood the question, others expressed the realiza-

tion that they too were holding a misconception, and other teachers

commented on the misconception’s importance or prevalence (“this
misconception is important, but I have to focus on other aspects of
coding, short-circuit operators are not at the top of my priorities” ).
One teacher asked for help dealing with a misconception in stu-

dents: “I really don’t know. I wish I would. Can you help? I see this
misconception a lot. It’s hard to explain. [...] I’ve been ‘fighting it’ for
a long time”.
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Figure 4: Change of the ratings for importance and preva-

lence of the misconceptions between teachers who answered

wrongly (red) and those who gave correct answers (green).

Dot sizes are proportional to the number of teachers who

gave that answer (averaging importance and prevalence). La-

bels refer to misconceptions with their acronym.

The remaining 39 % of answers contained instead relevant infor-

mation. Thematic analysis on these 461 answers resulted in seven

different themes. These themes correspond to seven strategies that

teachers use with three different aims: (i) prevent misconceptions

from developing altogether, (ii) detect their presence, and (iii) fix

them.

We report the themes in order of frequency. Each theme, corre-

sponding to a strategy, is illustrated with a description, exemplary

quotes from the teachers, and the aims (prevention, detection, fix-

ing) it can serve.

(1) Explain (149 answers). The teacher actively addresses the

misconception in their explanation. This may also involve

the use of specific examples to highlight the cases in which

holding the misconception leads to wrong predictions of

how certain programs behave, as opposed to the actual exe-

cution by a Python interpreter. For example, to fix the De-

ferredReturn misconception, a teacher explicitly informs

students that code written after a return statements is not

evaluated: “I clearly point out that after the return statement,
no code will be regarded within the function body”. Or, for
the ConditionalIsSeqence misconception: “I covered this
myself in the introduction of if-elif-else, I showed an ex-
ample where the change to if-if-else generates a different
output”. This strategy can be used both to prevent and fix

misconceptions.

(2) Test with Exercise (90 answers). The teacher tests the students

for specific misconceptions using coding or tracing exercises.

For example, a teacher reported testing for the NoAtomic-

Expression misconception during an exam, in which the

majority of students failed to identify while x: as valid

Python code, while they were able to recognize the validity

of while True: : “In a multiple choice question during the
first graded quiz of a programming course in grade 11, I asked
the students to identify which headers of a while loop were
syntactically correct. Almost nobody selected the option while
x:, even if it was near while True: which many recognized”.
This anecdote shows the importance of explicitly teaching

expressions (cf. Section 5.2.1), a concept teachers sometimes

neglect [15]. For OutsideInFunctionNesting, a teacher

reports using questions similar to those found in our survey:

“It is easy to detect with questions like in this survey”. This
strategy is mainly about detecting misconceptions.

(3) Receive Student Report (58 answers). The teacher responds to

some student report that could be triggered by the presence

of a misconception and addresses it. A teacher anecdotally

reports that their students “panic” and ask for help whenever
they encounter strange errors caused by the lack of parenthe-
ses in a supposed function invocation. For the teacher this

could signify the presence of the ParenthesesOnlyIfAr-

gument misconception, which then needs to be addressed:

“They ‘panicked’ that something really strange happened. As
always, I point out how IMPORTANT it is to follow the syn-
tax. This happens most frequently when I introduce functions”.
Another teacher reports the following: “They are puzzled as
to why their array changed even thought they had changed
another copy of the array [...]”. This is a clear symptom of

the AssignmentCopiesObjectmisconception. This strategy

too has the aim of detecting misconceptions.

(4) Notice Code Pattern (55 answers). Another strategy to detect

misconceptions: the teacher observes patterns in students’

code that suggest the student could hold a specific miscon-

ception. For instance, teachers may look for the presence

of the = token in the condition of if statements to detect

the AssignCompares misconception: “They use ‘=’ in if-
statements”.

(5) Use Program Visualization (55 answers). The teacher employs

some form of program visualization (such as a notional ma-

chine [17] or the debugger) to help students understand

aspects of programming in ways that fix misconceptions.

As an example, teachers may ask students to draw a flow-

chart to reason about the difference between if and while
statements, to address the ConditionalIsSeqence mis-

conception: “[The misconception] can be demonstrated and
taught through concrete examples with a flowchart. I find this
to be the most effective solution”. This strategy can be used

to detect, prevent, or fix misconceptions, depending on the

moment and the context in which the program visualization

is used.

(6) Connect to Math (32 answers). The teacher deals with the

misconception by connecting to mathematical concepts. For

OutsideInFunctionNesting, teachers reported referring

to the same concept of function nesting in mathematics to
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emphasize the importance of the evaluation order of nested

function invocations: “Since this is a concept also used in
mathematics, it is even more important to them, and they
already have some experience with it”. This strategy can be

used to either prevent or fix misconceptions.

(7) Rely on Compiler Tools (23 answers). The teacher relies on

the compiler to address the misconception. Compiler tools

can detect various issues with respect to the syntax and

static semantics of programs. This category also includes

tools that rely on compiler tools to report errors, such as

editors with syntax highlighting. Teachers reported relying

on SyntaxErrors generated by the parser to ensure that

students do not use reserved keywords as variable names,

to address NoReservedWords: “If they try [to use a reserved
word as the name of a variable], it gives them errors. They will
learn ‘on their own”’. This strategy can be used to both detect

and fix misconceptions.

We note that the strategies reported by teachers vary consid-

erably depending on the specific misconception. This is expected,

as not all strategies are adequate to prevent, detect or fix all the

misconceptions, and part of what makes teaching effective is pos-

sessing a repertoire of techniques to choose the right one for the

situation at hand.

5 Discussion

In summary, our results show that (1) teachers, and not only stu-

dents, can hold misconceptions: for the 16 misconceptions included

in our study, the percentage of teachers holding a specific miscon-

ception varies between 3% and 40 %; (2) teachers are familiar with

the misconceptions that were part of the study, they consider them

quite important, with a few exceptions, and they express different

views onwhether they have seen them in their students; (3) teachers

who correctly answered the assessment questions indicate being

more familiar with the misconceptions, claim that they are more

important, and report having seen them more often in their stu-

dents. In the discussion section, we dive deeper into some aspects

worth examining.

5.1 Multiple-Choice Questions and

Explanations

Researchers in the learning sciences have extensively studied the

issue of creating validated instruments to assess knowledge as accu-

rately as possible. There have also been efforts in computer science

education research to develop validated instruments, known as

concept inventories. Unfortunately, researchers often work within

specific contexts and this requires that they tailor their questions

to examine the intended area of knowledge.

This specific study dealt with programming as taught in Swiss

high schools, thus we selected among existing programming mis-

conceptions the ones relevant for our context (cf. Section 3.2) and de-

veloped an ad hoc instrument with multiple-choice questions of two

types. Following the recommendation by Chiodini and Hauswirth

[8], we paired the multiple-choice questions with a free-text expla-

nation, which we then manually analyzed. The analysis of these

explanations suggests four methodological considerations.

First, the explanations indicate that some participants can indeed

misunderstand the questions, and therefore do not give the answers

according to what the researcher expects. For example, a teacher

wrote this explanation to the question shown in Figure 5a: “an
expression is something that gives a result and can be evaluated. v
= 19 and the others, are not expressions”. This participant thought
the question was asking whether the entire statements, such as v
= 19, and not only the highlighted parts, were expressions.

Second, we assessed misconceptions with two related but differ-

ent questions. The differences go beyond the pure format of the

question and include using different code fragments, as seen in Fig-

ure 5. This may not constitute a source of difference for the specific

misconception of Figure 5, which indeed exhibits a similar rate of

wrong answers for the two question types (33 % for the illustrated

refutation and 31% for the code example). Other misconceptions,

however, show rather large discrepancies, likely due to the infor-

mation provided in the questions. Figure 6 shows the two questions

that involve the misconception ConditionalIsSeqence. While

the question shown in Figure 6a uses generic functions without

showing their implementation, the question in Figure 6b contains

concrete fragments of code that modify a variable flag, showing a

specific program that falsifies the claim “if-else is equivalent to
sequence of two ifs”.

Third, the way a certain question is formulatedmay have brought

about some learning on the spot. Figure 6b can serve again as an

example: a teacher may have never thought about the difference

between an if/else and a sequence of if/if not, but assuming

that they are able to accurately trace both programs, they could

realize that the claim is false in general and acquire the correct

conception in the moment.

Fourth, as a consequence of the previous two points, the differ-

ence in correctness between the two question types could be wider

than what we actually measured. Participants answered the two

question types for the same misconception in a random order. If

they acquired some knowledge from the first question type, and

they were able to transfer and use that knowledge for the second

question type (e.g., if they saw Figure 6b before Figure 6a), this may

have impacted the correctness on the questions.

5.2 Teachers’ Explanations on Questions about

Programming Misconceptions

The first part of the survey required teachers to provide textual

explanations, to increase the validity of the survey beyond what

multiple-choice questions alone would guarantee. These explana-

tions contain a rich source of claims from the teachers: some state

the correct conception, while others express an incorrect fact (i.e.,

the misconception). Explanations offer insights into the teachers’

thinking processes and complement our results by shedding light

on RQ1 beyond the numbers reported in Section 4.2. Occasion-

ally, teachers also added comments to their explanations about the

prevalence of a misconception among their students or about the

strategies they use to deal with it (RQ2 and RQ4).

We discuss each of the 16 programming misconceptions we stud-

ied, starting from the most commonly held (the prevalence of each

misconception is repeated in parentheses). Each misconception is

briefly summarized, where possible using the teachers’ own words,

https://progmiscon.org/misconceptions/Python/NoReservedWords
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(a) “Illustrated refutation text” type. (b) “Code Example” type.

Figure 5: The two questions targeting the NoAtomicExpressionmisconception.

(a) “Illustrated refutation text” type. (b) “Code Example” type.

Figure 6: The two questions targeting the ConditionalIsSeqencemisconception.

and enriched with concrete incorrect explanations that refer to

the specific questions in our study (the full questions are available

in the online appendix [7]). These quotes are not meant to serve

as quantitative evidence of certain phenomena, but rather offer a

glimpse into the teachers’ rich reasoning to answer the questions.

5.2.1 NoAtomicExpression (40 %). The correct claim is that, using

the words of a teacher who answered correctly, “an expression is any
piece of code that returns a value”. Pragmatically, another teacher

observes: “I can evaluate the value of 123, it is 123. Therefore it’s an
expression.”

Some teachers questioned the exact definition of expression.

There is also controversy on the fact that a fragment of code may

play multiple roles (cf. Figure 5b): “123 is an argument, 1+5 is an
expression”, “123 is only a value”.

Expressions are a fundamental concept in programming lan-

guages such as Python [11]. One can start from atomic expressions

and use them as building blocks to compose larger expressions,

which can then be composed further. This compositional nature

of expressions allows programmers to do abstract reasoning and

avoid memorizing lots of special-purpose rules. Despite this, some

teachers report not covering them: “I’ve never used the term in a
school context”, “I have not covered the concept of expression in my
own teaching and have not used it anymore since the training course”.

5.2.2 ReturnUnwindsMultipleFrames (38 %). To properly explain

what happens when a function returns, a number of teachers re-

ferred to the call stack, demonstrating a proper understanding:

“When a return statement is executed in a function, it completes that
function’s execution and returns control to the point where the func-
tion was called. This action pops only the current function’s call stack
frame, meaning it exits the current function but does not directly
affect any other frames further down the stack.”, “A return statement
in Python only pops the current function’s call stack frame, return-
ing control to the immediate caller, not multiple frames”, “Functions

https://progmiscon.org/misconceptions/Python/NoAtomicExpression
https://progmiscon.org/misconceptions/Python/ConditionalIsSequence
https://progmiscon.org/misconceptions/Python/NoAtomicExpression
https://progmiscon.org/misconceptions/Python/ReturnUnwindsMultipleFrames


ICER 2025 Vol. 1, August 3–6, 2025, Charlottesville, VA, USA Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth

on call stack must be removed function by function”, “Because the
functions lie on an ‘execution stack”’.

Many teachers claimed to be uncertain. Some confused the ac-

tion of returning, when the callee terminates and gives back the

control to the caller, with the return of a value, and got puzzled by

the presence of a return statement without any expression or the

lack of a return statement altogether. (In Python, in both cases the

value actually returned is None.) “b doesn’t return to a, it gives back
nothing”, “a has no return-statement”, “only b returns”.

A couple of teachers noted that the answer would be different if

Python had support for “tail-call optimization”.

5.2.3 ConditionalIsSequence (35 %). A sequence of two if state-

ments, where the second condition is the negation of the first, is not

necessarily equivalent to an if/else statement, due to potential

side effects.

Teachers report that this misconception commonly leads to bugs

for students: “Indeed, in the second code, flag is set to False before
the second if statement, which will as a result be validated. That
is a common mistake my students do”, “Pupils often state the 2nd
statement wrongly so I encourage them to always use if-else”.

Some teachers pointed out that in one of the two questions (Fig-

ure 6a) c() must return a boolean value for the question to be well

defined. This is a reasonable assumption, but Python actually per-

mits arbitrary values in conditions, which are interpreted according

to their truthiness.

5.2.4 NoShortCircuit (31 %). Python does not always evaluate

both operands in expressions with and/or operators. Several teach-

ers are aware of this “lazy” behavior, mentioning efficiency as the

reason for short-circuiting: “it’s more efficient, there is no need to
check b if a is already false”, “avoiding unnecessary operations and
thus working more efficiently”, “Python is designed to take advan-
tage of the logic in order to improve the efficiency of execution time”,
“running the second test is not needed and not running it would allow
a programmer to optimize away some expensive tests by ordering
things the right way”. We did not find explanations mentioning the

possibility of exploiting this behavior to guard the execution of a

method and call it only when a variable does not refer to None (e.g.,
the idiom o and o.m()).

Some teachers know Java and express doubts about whether

Python’s and corresponds to Java’s & or &&: “Here I am not sure
whether and behaves like && in Java”, “I don’t know whether in
Python there is a difference between & and &&”.

5.2.5 MultipleValuesReturn (30 %). Python’s lightweight syntax

for creating a tuple (e.g., return a, b) induces some teachers

to claim that functions can actually return multiple values: “two
variables are given in the return statement”, “functions can return
many values separated by commas”. The language and common

idioms may deepen this misunderstanding, as one can use the

unpack syntax to assign two values to two variables, making it look

like two values are actually returned. Indeed, a teacher observed:

“get_names returns 2 values (here strings) that will be stored in two
different variables. For example here we should call this function as:
firstname, lastname = get_names(thisperson)”.

Several teachers explained that values are packed into a list,

although Python actually creates an immutable tuple. The flexibility

can admittedly be confusing: “strange ‘inconsistency’ in Python [. . . ]
that return (a) does not return a tuple, return [a] returns a list,
but return a, b produces a tuple”. Creating a single-element tuple

in Python requires a trailing comma, with or without parentheses,

as in return (a,).

5.2.6 AssignmentCopiesObject (27 %). Several teachers explained

that the correct behavior, i.e., objects are not copied but aliased with

a simple assignment, is due to “pass by reference”. Lu and Krishna-

murthi [24] argue that while the terminology “call-by-reference” is

widespread, it would bemore appropriate to use “bind-by-reference”,

as the semantics not only affects calls but also definitions and copies

of structured data. Teachers likely heard, understood and memo-

rized the terminology “pass by reference” during their training and

are now using it to explain these related behaviors, even when,

like in our question with a simple assignment, there is no call and

therefore nothing is “passed”. This kind of explanation was com-

monplace: “pass by reference: a and b point to the same place in
memory so if you modify one of the two you modify both”, “Using =
to assign to b the values of a, you pass everything by reference, so
the changes on b are also valid on a”, “I think it is call by reference”,
“lists are pass by reference, not by value”.

Students struggle with problems caused by this misconception:

“To me a questionable design choice in Python causing problems for
students”, “This misconception sometimes causes problems for students
who are used to have copied values”.

5.2.7 MapToBooleanWithIf (26 %). Some teachers are convinced

that an if statement is necessary to produce a boolean value, even

when one already has a boolean expression: “Without if-statement
there would be no check”, “a value has to be returned, not a boolean
comparison”, “you can’t return a relational comparison which then
makes no sense”, “for a True or False, I need an if”. This belief may

stem from teachers having hardly ever seen an example where a

return statement includes a relational expression, and may have

internalized the if statement pattern as a necessary structure.

5.2.8 ComparisonWithBoolLiteral (22 %). The questions for this

misconception featured an if statement with either stop or stop
== True as a condition. Some teachers’ explanations featured the

very definition of this misconception, which claims that a variable

alone is not enough to be a condition: “stop is a variable here whose
value must be checked”, “stop needs a comparison with something,
otherwise the expression doesn’t make sense”.

Many teachers noted that the two expressions are equivalent

only if stop is a boolean: “if stop is a boolean, then the value is True
or False, we don’t need to test it”. This is a reasonable assumption,

but it is not strictly correct in Python (e.g., 1 is a value considered

to be true, and the expression 1 == True is also true).

5.2.9 ReturnCall (20 %). A return statement is not a function call

and therefore does not require parentheses. Most teachers are well

aware of this: “return is not a function”, “it is not a function but a
reserved word”, “parentheses are not needed”. A teacher pointed out

that the evolution of the Python language has been confusing on

the distinction between statements and function calls: “I think this
has changed from Python 2 to 3. Similar to print 5 + x”.

Another teacher incorrectly noted in their explanation for this

misconception that “return needs a value not an expression to return”,
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which may be a symptom of the NoAtomicExpression misconcep-

tion (Section 5.2.1).

5.2.10 ParenthesesOnlyIfArgument (15 %). Parentheses are nec-

essary even for function calls without arguments. Some teachers

mentioned in their explanations that they and their students fre-

quently encounter a related mistake, when they do not add paren-

theses: “we print a representation of the function itself, which includes
the position in memory (frequent mistake among students)”, “mistake
made multiple times [at the university during the training program]”.
Others are aware that without parentheses the function is not called,

but are unsure about what happens: “I thought print(f) yields error
message, but certainly not 42”.

5.2.11 NoReservedWords (14 %). Some words are reserved by the

language and cannot be used as identifiers. Most teachers answered

correctly, but some explanations showed uncertainty on the extent

of the reserved words. For example, a teacher notes that “at least
for the word ‘sum’ I know that it works”, likely observing that it

is possible to override the meaning of certain words. In Python,

sum is the identifier of a built-in function, which indeed can be

reassigned. The general flexibility of the programming language

may also induce someone to think that certain operations may be

possible: “I am not sure about that... Python is so tolerant sometimes...”.

5.2.12 OutsideInFunctionNesting (11 %). Nested function calls

are not invoked outside-in, but inside-out. A handful of teachers

described strategies to remind themselves and their students of the

correct order, relating the evaluation of nested Python function

calls to mathematics: “This is the same as with nested functions in
mathematics”, “Like ‘chaining’ in math, or formulas in Excel”, “Like
in mathematics, working inside out”, “Otherwise it would contradict
mathematics”.

5.2.13 DeferredReturn (9 %). As many teachers note, a return

statement “immediately terminates the function”, regardless of its
position, and thus any other subsequent statement in the body of

the function is not evaluated. The question with the illustrated

refutation text contained a sequence diagram, which is already an

explanation of sorts.

Some teachers clearly showed the misconception in their ex-

planation, claiming that the print function invocation that in our

question comes after the return statement is still executed, before

the function actually returns: “print("Done!") is executed first,
then the return value of the method is printed.”

A couple of teachers pointed out that the code we provided,

which contained another statement after the return statement,

would not be accepted by a certain educational IDE: “the print-
statement is not reachable, with e.g., TigerJython would even produce
an error message ‘return returns to the call site”’.

5.2.14 VariablesHoldExpressions (8 %). When assigning to a vari-

able, the expression on the right-hand side of the = operator “[...] is
evaluated and the resulting value assigned to a variable”, as explained
by a teacher. The variable holds a reference to a value, not to an

expression that needs to be evaluated: “[Assignments] do not work
like functions.”

The illustrated refutation questions for this misconception (as

well as the ones for AssignCompares) included a memory diagram

depicting numbers as objects on the heap. Some teachers incor-

rectly claimed that the diagram was wrong: “v is an integer, not an
object”, “numbers are primitive data-types and are stored by value”,
“v=8 does not change a. Assignment concerning numbers uses copy
by value”, “a simple integer isn’t an object”. Most probably, teachers

were transferring knowledge from other programming languages

where numerical values are not stored as objects on the heap. Given

our context, we expect Java to be the main source of these explana-

tions. (The choice of including a memory diagram may thus have

misled some teachers, who answered incorrectly because they mis-

understood the question. The analysis of the explanations helped

to rectify some of these cases.)

A couple of teachers correctly observed that both diagrams,

even the one in the correct answer, were slightly incorrect, as they

showed 2 instead of 2.0 as a result of the division: “v/2 evaluates
to the float 2.0, not the int 2. For example, range(v/2) would raise
a TypeError. This is something students struggle with [...]”.

5.2.15 IfIsLoop (4 %). The correct claim is that “if is executed
only once”. Almost all teachers correctly answered both questions

targeting this misconception. Interestingly, however, two teachers

verbalized the exact misconception, mistaking an if statement

for a while statement: “The variable a is reduced by one while it’s
greater than 0. Thus a decreases 3, 2, 1, 0 and when it reaches 0 the
loop finishes and this last value is then printed”, “The variable a is
decremented until a reaches 0”.

5.2.16 AssignCompares (3 %). Python, like many other program-

ming languages, uses = to denote the assignment of values to

variables and the == binary operator for equality. This miscon-

ception, believing that = actually compares for equality, is widely

known [10, 19]. Teachers are well aware of it and of the prob-

lems it causes: “this is a common source of errors” and even suggest

a possible remedy: “In my opinion, this is a design flaw in many
programming languages because the equal sign does not signal the
inherent right-to-left direction of the operation. I’d rather use <- for
assignment”.

5.3 Years of Experience Are Not Correlated

With Better Performance

Figure 7 compares the years of teaching experience with the num-

ber of correct answers by a teacher. Computing the correlation

using Pearson’s 𝑟 reveals that the number of years spent teaching

informatics is only very weakly correlated with the number of cor-

rect answers (𝑟 = 0.09, 𝑝 = 0.37); such correlation is insignificant.

The correlation completely disappears when we consider the years

of teaching experience in general: 𝑟 = −0.01, 𝑝 = 0.90.

Contrary to what one may naïvely expect, these results show

that years of teaching experience may not accurately predict the

presence of programming misconceptions in a teacher. As a conse-

quence, carrying out an assessment is necessary when one intends

to get a more reliable measure of the teachers’ knowledge.

6 Threats To Validity and Limitations

External validity. We only surveyed teachers in one country, at

one educational level, and focused only on one programming lan-

guage. Our results might not generalize to other countries, other
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Figure 7: Number of correct answers for the 16 misconceptions given by the 97 teachers, according to the number of years of

teaching experience overall (left) and teaching experience in informatics (right).

levels, and other programming languages. However, the set of teach-

ers consisted of 3 groups speaking 3 different natural languages,

some of whom went through related but different retraining pro-

grams (different instructors, different programming curricula).

We only studied 16 misconceptions. We carefully picked that set:

they were all previously reported and unambiguously documented

in the progmiscon.org inventory. They all focused on Python, and

specifically on concepts the teachers covered in their courses. While

there certainly are other misconceptions we did not include in our

study, we did include every Python misconception reported on the

inventory related to the concepts teachers cover in their courses.

Internal Validity. The teachers completed the survey on their

own and could theoretically have cheated in the assessment part.

We explicitly asked them to answer honestly and without any help,

and the survey was anonymous, thus their incentive to cheat was

minimal.

The survey was long, possibly leading to a decrease of attention

over time. We randomized the presentation of the misconceptions

in both parts, which meant that each misconception had an equal

chance to appear early in the process.

To increase the validity of an otherwise multiple-choice-only in-

strument, we augmented the multiple-choice questions with manda-

tory textual explanations. Each explanation was manually assessed

by a single rater. Despite agreeing beforehand on the criteria to

assess the explanations, we did not have multiple raters assess the

same explanation. While this would have increased the validity

of the study even more, subsequent checks provide diminishing

returns, and the explanations are already a check of the multiple-

choice answers themselves.

Teachers may have provided random answers to claim the re-

ward with minimal effort. Given that we personally knew most

of the invited teachers, chances that they clicked through the sur-

vey just to claim their reward are small. The manually reviewed

explanations confirm that all teachers wrote reasonable answers

throughout the assessment part of the survey. The average time

spent on the survey was considerably longer than expected (cf.

Section 4).

Teachers might have overstated the importance they attribute

to the misconceptions, because they might have believed we were

interested in seeing a high importance. We believe this is possible,

but the relative importance between the misconceptions would

equally be affected by this factor. Our results focus on the relative

importance.

7 Conclusions

We conducted an extensive survey about programming misconcep-

tions with teachers at the upper secondary level in Switzerland. On

a set of assessment items focusing on 16 Python misconceptions,

the majority of teachers answered correctly, but we found that

between 3% and 40% gave incorrect answers, depending on the

misconception. Overall, teachers were familiar with the misconcep-

tions, considered them rather important and reported having seen

them in their students.

This study contributes to the body of literature that assesses

the prevalence of programming misconceptions. Similar to prior

research, it surveys teachers about the prevalence and importance

of misconceptions they encounter in their classrooms, and about

their strategies to detect and fix them. However, unlike prior re-

search, it also determines whether the teachers themselves hold

these misconceptions. The study shows that focusing on responses

by teachers who do not hold the corresponding misconception has

a significant effect on the results. Teachers who did not hold a

misconception considered it more prevalent and more important.

Commenting at the end of the survey, teachers felt that taking

the survey helped them reflect on their own conceptions (“always
valuable to reflect one’s own conceptions. :)” ) and their own teaching

(“Some of the possible misconceptions throw an interesting light on
the difficulties encountered by students.”, “I realize that there is a
lot to improve my teaching!” ). We hope that this study helps other

educators to recognize and address the discussed misconceptions,

and that it provides a solid foundation for future research.
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