
The Toolbox of Functions: Teaching Code Reuse in Schools
Luca Chiodini

Software Institute - Università della
Svizzera italiana

Lugano, Switzerland
luca.chiodini@usi.ch

Joey Bevilacqua
Software Institute - Università della

Svizzera italiana
Lugano, Switzerland

joey.bevilacqua@usi.ch

Matthias Hauswirth
Software Institute - Università della

Svizzera italiana
Lugano, Switzerland

matthias.hauswirth@usi.ch

Abstract
Large programs often contain duplicate parts, known as code clones.
Programs riddled with code clones become difficult to reason about
and modify. To avoid code clones and enable code reuse, program-
mers introduce abstractions such as functions and classes. Because
abstraction is so important, it should be explicitly taught in program-
ming courses and appropriately supported by tools. Unfortunately,
development environments, including some for novices, do not al-
ways encourage abstraction. Instead, they facilitate the creation of
code clones and ultimately hinder code reuse. This paper presents
the Toolbox of Functions, an approach for teaching code reuse to
beginner programmers in schools. This approach helps students to
develop, collect, and reuse their own functions, as a simple form of
abstraction. Learners are guided in creating and using their own
library, without the complexity found in other environments. We
implemented the approach in a publicly-available web platform for
programming in Python. We collaborated with high school teach-
ers who adopted the approach in their mandatory programming
courses. Over the course of a year, more than 800 users executed
over 30 000 programs that use the Toolbox of Functions. This ini-
tial experience suggests the potential of the approach to instill the
principle of code reuse effectively.

CCS Concepts
• Social and professional topics→ Computer science educa-
tion.

Keywords
Software Engineering Education, Libraries, Code Reuse, Abstraction
ACM Reference Format:
Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth. 2025. The Toolbox
of Functions: Teaching Code Reuse in Schools. In ECSEE 2025: European
Conference on Software Engineering Education (ECSEE 2025), June 02–04,
2025, Seeon, Germany. ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/3723010.3723029

1 Introduction
More and more countries are introducing programming education
in their school curricula. Due to the limited classroom time available,
programming lessons often focus on writing small one-off pieces of

This work is licensed under a Creative Commons Attribution International
4.0 License.

ECSEE 2025, Seeon, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1282-1/25/06
https://doi.org/10.1145/3723010.3723029

code. The focus lies on getting students to solve specific problems,
and students then throw away their solutions once they are done.

Only diligent students may keep an organized collection of their
solutions to different programming exercises. Theymay then review
their solutions when preparing for exams, but they will rarely
actually reuse any of the code theywrote. Such learning experiences,
involving many small but disconnected pieces of code, do not reflect
the ideas of software engineering.

This paper presents the Toolbox of Functions (ToF), an approach
to encourage code reuse in a motivating and simple way. We im-
plemented the ToF in a web-based Python programming platform
used in programming courses in several Swiss high schools.

We proceed by illustrating the problem addressed by the ToF
(Section 2), explaining the general approach (Section 3), describing
an instantiation of the approach in a web platform (Section 4), and
briefly reporting on its initial use in schools (Section 5).

2 Background and Related work
When they grow beyond toy examples, programs invariably end
up consisting of multiple parts that accomplish similar behaviors.
How are these related behaviors implemented in program code?
One straightforward option is writing the same or similar code as
many times as needed. These duplicate parts of program code are
known as code clones. Code clones can be classified into different
types [9], ranging from being exact duplications of identical chunks
of code, to being duplications except for some identifiers, to having
some additional or missing parts of code.

Producing code clones is disadvantageous because it leads to
maintainability issues [6]. A bug discovered in one clone, or a
change needed to accommodate a new functionality, needs to be
identified and manually applied individually to each clone.

2.1 Code Clones Are Widespread
Despite the disadvantages, programmers frequently duplicate code.
The adage “Copy & Paste” embodies this idea. Such an operation is
sometimes considered the fastest way to achieve a certain goal.

Because abstraction is considered a fundamental but difficult
concept to master in computer science [13], it is perhaps unsur-
prising that novice programmers avoid abstractions and frequently
resort to copy-paste [7, 15].

Studies show that even code written by experienced program-
mers commonly contains code clones. For example, code clones are
common in code examples published on Stack Overflow [3] and in
code cells contained in Jupyter notebooks [8]. A large-scale study
on GitHub repositories across multiple programming languages
found high rates of code duplication in files both within a repository
and across repositories [11].

https://orcid.org/0000-0002-2712-9248
https://orcid.org/0009-0009-3127-0859
https://orcid.org/0000-0001-5527-5931
https://doi.org/10.1145/3723010.3723029
https://doi.org/10.1145/3723010.3723029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3723010.3723029


ECSEE 2025, June 02–04, 2025, Seeon, Germany Chiodini et al.

The recent diffusion of powerful language models for code, and
their integration in Integrated Development Environments (IDEs),
reduced the time needed to duplicate a piece of code even further.
This applies also to non-exact clones, such as those with replaced
identifiers. The language model can quickly recognize the desired
pattern even just after typing the first replacement, and can in-
stantly complete the rest of the code.

2.2 Avoiding Code Clones With Code Reuse
Software engineering as a discipline realized a long time ago the pos-
sibility of writing programs in a modular sense [12, 16]. These “mod-
ules” have been variously called subroutines, procedures, or func-
tions; fundamentally, they are abstractions. Modern programming
languages support several forms of abstractions, including some
more elaborate than the ones mentioned above, such as classes.

In this work we will focus on functions, as they are a simple but
powerful form of abstraction that is suitable for novices in a school
context. Functions can offer “configuration options” [16] through
parameters, to accommodate the differences in behavior that are
required in different parts of the program.

When the code to achieve a certain functionality is abstracted
as a function, it can be reused by calling that function in multiple
places within the program, every time one needs that functionality.

The next logical step is to reuse code across programs. Indeed,
programmers are familiar with the idea of using functions from
a library. Programming languages come by default with libraries
containing several functions deemed useful in many contexts (a
library for operations with dates and times, for example).

2.3 Environments Not Always Favor Code Reuse
Code reuse is however not on the path of least resistance: features of
existing IDEs can discourage reuse and instead lead to code clones.

2.3.1 Code Snippets. Programmers, both novice and experienced
ones, can find themselves not having a clear idea of how to solve a
problem. Inmost cases, that specific problem—or a very related one—
has already been solved by someone else, and thus the programmer
can try to obtain a fragment of code, either to include as is or to
adapt with minor modifications [2].

These code snippets can be obtained in different ways from
several different sources, such as code-repository sharing platforms
(e.g., GitHub), Q&A platforms (e.g., StackOverflow), code-snippets
sharing platforms (e.g., GitHub Gist), and language models, that
generate code fragments based on the code they have been trained
on (which was in turn sourced from the aforementioned platforms).

Moreover, some environments for notebooks, such as Google
Colab, allow users to directly inject pieces of code from a collection
of “snippets”: fragments of code to solve recurring programming
problems. The environment comes with a selection of pre-written
snippets, but also allows users to save and retrieve their own.

2.3.2 Code Templates. Online platforms are not the only source
of fragments of code: IDEs also provide features to facilitate the
repeated insertion of specific code templates. Templates are more
powerful than snippets because they may contain holes to be filled
in by the programmer when they want to include them. When code
templates become fully concrete, they effectively turn into snippets.

Some IDEs use code templates to assist in writing “boilerplate
code”, i.e., repetitive patterns of code. For example, the for keyword
can be automatically expanded to the full skeleton of the for loop
statement in a language like C, and the keyword class can be
turned into a complete class declaration in Java.

More advanced environments also enable developers to define
their own custom templates. These features go under different
names, such as IntelliJ’s Live Templates and VSCode’s Snippets.

Code templates can go even further: some IDEs employ static
analysis techniques to generate code leveraging information ex-
tracted from existing code. For instance, IDEs such as Eclipse or
IntelliJ IDEA include a widely used feature that generates an im-
plementation of the equals and hashCode methods for a class by
inspecting the fields declared by the programmer.

2.3.3 Remixing in Scratch. Code clones are not exclusive to text-
based programming languages. A study on Scratch, a popular choice
to teach programming in schools using blocks, showed that Scratch
projects contain code clones quite pervasively, and that functions
as abstractions are rarely used [1].

The Scratch platform promotes taking an entire published project
and “remixing” it. This is yet another example of an environment
that favors code duplication over reuse: instead of being able to
import a well-defined abstraction, such as a sequence of blocks
packaged in a function, learners are nudged to “fork” [9] an entire
project, ending up with code clones.

2.3.4 Complexity of Multi-File Projects. School teachers use dif-
ferent kinds of IDEs: some choose to work with novice-oriented
IDEs such as Thonny or BlueJ, some work with full-fledged ones
such as Visual Studio Code, and others adopt web-based program-
ming platforms, which range from barebone ones like Ideone to
sophisticated ones like GitHub’s Codespaces.

No matter the setup, it is non-trivial to reuse code beyond one
single file. IDEs may structure a project into several files, potentially
divided into several folders. This complexity is one of the reasons
behind the need for a build system: a tool that helps programmers
develop programs consisting of multiple files. Reusing code across
files requires configuring the environment to handle this setup.
This may require configuring the IDE, adopting a precise structure
for files and folders, and following the non-obvious importing rules
that deal with relative or absolute paths.

The problem is exacerbated when one wants to reuse code across
different projects. This requires refactoring code into a separate
library, which can then be imported into multiple projects. Import-
ing libraries outside those that come standard with a programming
language is often a source of pain, even for experienced developers.

Understandably, teachers want to eschew all these problems
and have their students spend the limited time available on actual
programming, as opposed to configuring an environment. As a
result, students may be instructed to limit themselves to using only
a single file, be that a real file on their device or a virtual one in a
web-based text editor.

Unfortunately, this deprives learners of the opportunity to get
acquainted with code reuse in the simple context of programs with
a modest size. Having students practice code reuse early on teaches
them the right practices, which they can then apply to larger soft-
ware engineering projects.

https://github.com
https://stackoverflow.com
https://gist.github.com
https://colab.research.google.com/
https://colab.research.google.com/
https://www.jetbrains.com/help/idea/creating-and-editing-live-templates.html
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://eclipseide.org/
https://www.jetbrains.com/idea/
https://en.scratch-wiki.info/wiki/Remix
https://thonny.org/
https://bluej.org/
https://code.visualstudio.com/
https://ideone.com
https://github.com/features/codespaces


The Toolbox of Functions: Teaching Code Reuse in Schools ECSEE 2025, June 02–04, 2025, Seeon, Germany

2.4 Assignments Not Always Favor Code Reuse
Teachers of programming courses commonly design assignments
for their students to practice programming skills. At the beginning
of an introductory course, a programming assignment typically
consists of small, independent exercises. As the course progresses,
an assignment can become a small project. Still, most assignments
do not reuse solutions from earlier work.

Students can find themselves re-implementing the same func-
tionality multiple times, effectively writing code clones across as-
signments. Instead, learners should be guided to decompose the
solution of each assignment into functions, identify the ones that
are general and potentially useful for other problems, and use these
functions again in the subsequent assignments. This way, students
could learn and practice code reuse in a controlled context.

3 An Approach to Promote Code Reuse

A wise handyperson knows the advantage of having the right
tool ready to deal with a certain situation, and always carries a
toolbox containing various useful items. Based on this analogy,
we propose that beginner programmers should keep a Toolbox
of Functions (ToF) at their disposal: an always-available library
of functions that are potentially useful to solve future tasks.

When students recognize the potential general applicability of a
function they defined (or the instructions in an assignment recom-
mend doing so), they should add that function to their personal ToF.
Applying on a small scale what a good software engineer would do,
adding a function to the ToF requires some polishing, to become
a reusable abstraction. The learner should identify all the depen-
dencies of the function, such as other functions called or global
constants used, and keep them alongside the function they intend
to save. Then, students should consider improving the names of the
function and its parameters to ensure they are descriptive, annotate
the signature with types (for statically typed languages), and add
documentation that reminds their future selves of what the function
is supposed to do. Optionally, they could also add some tests to
ensure that the function they extracted works as intended.

As the ToF grows, teachers can ask students to implement more
elaborate programs, counting on the fact that they have already
implemented certain functions which are ready to be used. Stu-
dents can quickly solve parts of a larger assignment by importing
functions from their ToF, call them with the right arguments, and
then focus on the rest of the program.

This practice empowers students with a sense of satisfaction and
purpose that derives from reusing—instead of throwing away—the
code they had to implement earlier for a different problem. And
this is achieved without any code clone or copy-paste activity.

4 Toolbox of Functions: Instantiation
The ToF approach we described is independent of both the program-
ming language and the environment. In this section, we describe
one specific instantiation of the approach, as it is implemented in Py-
Tamaro Web, a publicly available web-based Python programming
environment at https://pytamaro.si.usi.ch and centered around the
PyTamaro graphics library [5].

4.1 Context
The PyTamaro Web platform offers a rich environment, with web
pages offering guided programming activities that contain “code
cells” interleaved with text and pictures, similar to a Jupyter note-
book. The platform includes over 200 guided activities, many of
which were contributed by high school teachers.

Activities can be organized in a curriculum. A curriculum is a
sequence of activities that students may need to go through in order.
Some activities may be optional, and sometimes students can select
one of multiple alternative activities. While some curricula consist
of only a handful of activities, some teacher-designed curricula
cover an entire semester of programming activities.

Through a curriculum and its activities, the teacher can struc-
ture the learning process. They can gradually introduce language
constructs and library functions, providing an increasingly richer
programming experience.

As a small-scale running example for demonstration purposes,
we will consider a tiny fictional curriculum with two activities,
which ask students to draw an “eye” and a “no entry” traffic sign.

4.2 Introducing Functions
When a student solves a programming activity, code clones may
appear, possibly due to copy-paste. This often occurs when working
with a minimal educational library such as PyTamaro, which does
not include functions like square or circle to encourage students
to define their own starting from rectangle or ellipse.

Code clones can occurwithin a single code cell or can be scattered
across multiple cells. Students can be instructed to observe the
similarities betweenmultiple clones and identify the few differences.
They can then define a function with a parameter for each of these
differences, and with the body containing the clone, where the
differences are replaced by the parameters. Finally, each clone can
be replaced with a simple call to the newly defined function.

Defining functions enables code reuse within a single activity.
The result of this abstraction process is shown in Figure 1a for the
“eye” activity, in which students can extract a function to create
a circle of a given radius and use it twice to draw the pupil and
the iris of the eye. Teachers can scaffold this process by providing
interleaved explanations and setting up code cells accordingly.

4.3 Adding to the Toolbox of Functions
Once the student has defined their own function, they may want
to save it for later use by adding it to the ToF.

When the code written by a student contains the definition of
at least one function, a button with the icon of a handyperson’s
tools appears automatically (Figure 1a). This automatism is made
possible by statically analyzing the Python code directly in the
browser, using a Rust library compiled into WebAssembly.

Clicking on that button opens a popup with instructions on how
to save a function to the ToF (Figure 1b). Following the approach
described in Section 3, learners should:

(1) Identify all the dependencies of the function they want to
save. These may include import statements or global con-
stants to define the names that are used in the function body
and other functions that are called by the function to be
saved. Other pieces of code are unnecessary and should be

https://pytamaro.si.usi.ch
https://jupyter.org/
https://jupyter.org/


ECSEE 2025, June 02–04, 2025, Seeon, Germany Chiodini et al.

(a) Students define the circle function to solve the “eye” activity.
They can save it by clicking on the ToF button (red arrow).

(b) A popup opens. In the first part of the popup, instructions guide
students in cleaning up their code to make the function reusable.

(c) In the second part of the popup, students have to write minimal
documentation, implement and run an example program before
being allowed to add the function to the ToF.

Figure 1: Adding circle to the ToF in the “eye” activity.

removed, such as possible calls to the function being saved,
as well as any code used for debugging (e.g., print).

(2) Write a description to remember what the function does, as
a minimal form of documentation. When a function contains
a docstring written following the PEP 257 convention, the
ToF uses that string as documentation by default.

(3) Implement and execute a short program that calls the func-
tion. This serves a dual purpose. First, it serves as a light-
weight, non-automatic form of testing, to detect, for example,
leftover side effects in the function body, such as debugging
statements. Second, it serves as a form of documentation on
how to call that function in the future (Figure 1c).

Students can then add the function to their ToF, without worry-
ing about managing Python files to set up and maintain a library.

4.4 Using the Toolbox of Functions
The tools in a physical toolbox are always near a handyperson. Sim-
ilarly, the functions in the virtual toolbox are near the programmer.
On each activity page, the ToF is presented in a sidebar (left side
of Figure 2a). This quick overview of the ToF realizes Victor’s idea
of “dumping the parts bucket onto the floor” to “encourage the pro-
grammer to explore the available functions” [14]. Students can see
that they have a circle function that may be useful in an activity
where they need to draw a “no entry” traffic sign (Figure 2b).

(a) Students explore functions in the ToF (left sidebar, always visible
while solving activities). Their documentation opens in a popup.

(b) Students can import the circle function from the ToF just like
from any other library and reuse their code in a different activity.

Figure 2: Using circle from the ToF in the “no entry” activity.

Moreover, by clicking on the corresponding item in the sidebar,
students can quickly retrieve the documentation for each of their
functions. The documentation for all the libraries, including the
ToF, is shown using the novice-friendly format introduced by Chio-
dini et al. [4] (right side of Figure 2a). The documentation describes
the various properties of the function. The function signature is
detected automatically and is optionally enriched with the parame-
ter and return types, if the original function was augmented with
type annotations. The description and the usage example, instead,
come directly from the learner. The example code can be executed
in-place, as a reminder of the function’s behavior (Figure 2a).

Once the student has identified a function to use, they can reap
the benefits of code reuse with almost no effort. All that is needed
is to import the circle function from the toolbox library and call
it with the proper arguments.

4.5 Growing the Toolbox of Functions
Functions in the ToF behave exactly like all the other functions.
They can be used as part of the definitions of new functions, and
students can add these new functions to their ToF as well. On a
small scale, this showcases how to build more powerful abstractions
on top of simpler ones.

Behind the scenes, each function is stored in a separate file, to
avoid possible conflicts (e.g., two functions may have been added
to the ToF from two activities that defined two different constants
with the same name). All the ToF functions required for a certain
activity are exported from the toolbox Python module, which in
turn imports the necessary functions. These imports follow the
topological sort of the dependencies, to avoid circular imports.

All this complexity is hidden from the student, who can just focus
on defining and using functions, fulfilling the goal of practicing
abstraction and code reuse without any waste of time.

https://peps.python.org/pep-0257/


The Toolbox of Functions: Teaching Code Reuse in Schools ECSEE 2025, June 02–04, 2025, Seeon, Germany

4.6 Managing the Toolbox of Functions
The platform also enables learners to manage their ToF. Learners
can search their toolbox, remove functions from the toolbox, and
modify existing functions. This is an essential feature to support stu-
dents who need to fix a bug or make an improvement to their code.
At the same time, it offers a sneak peek into the intricacies of library
and Application Programming Interface (API) evolution—another
important aspect of software engineering [10]—in a controlled set-
ting: whenever the signature (public interface) of a function in the
ToF changes, any program using it needs to be updated accordingly.

5 Classroom Experience
We implemented the ToF in the PyTamaro Web platform roughly
two years ago. We first created example activities to showcase the
ToF. Then we collaborated with high school teachers and explained
its benefits. Over time, teachers started to integrate the ToF into
their own curricula and activities they use regularly in class.

Focusing only on the last year, usage statistics show that students
added more than 1 420 functions to their ToF. A total of 32 522
code executions made by 880 different users imported at least one
function from their ToF in their code. The actual user count is likely
underestimated, as the platform collects data only from users who
give their explicit consent. However, users are simply identified by
a randomly generated UUID stored in the browser’s local storage,
which might be reset at any time, leading to double counts.

Currently, the platform hosts more than 50 different activities
that use the ToF, created by 6 different instructors. According to
a teacher who actively uses the ToF in their lessons, students are
keen on collecting functions and watching their ToF grow. This
anecdote suggests that students can perceive curating a ToF as a
benefit rather than a chore.

6 Limitations & Future Work
The ToF focuses on functions because they are both a fundamental
building block to define abstractions and widely taught in schools.
However, other kinds of abstractions exist, such as class definitions.
The approach of the ToF could be extended to support those too.

The current model of the ToF has a flat structure. This is a de-
liberate choice to keep adding to and importing from the ToF as
simple as possible, but it can become inadequate when the num-
ber of functions grows too large. Some form of namespacing (e.g.,
Python submodules) could better organize the ToF, but it would
require dealing—albeit in a more controlled way—with files and
folders, which can be a pain point for students (cf. Section 2.3.4).

Changing the signature of a function stored in the ToF may break
all the code that depends on it. Students should be warned of the
risks, making them aware of the consequences of changing a public
API. An expansion of the ToF could be used to teach more advanced
software engineering principles related to code reuse, such as API
versioning and the concept of third–party dependencies. This could
also open the possibility of introducing a code-sharing mechanism,
allowing students to reuse the code already written by their peers.

7 Conclusion
In this paper we presented the Toolbox of Functions (ToF), an
approach for teaching code reuse in schools in a simple way.

We described how existing IDEs do not always favor code reuse
and may even encourage code clones. To counter that and teach
proper abstractions and code reuse, we introduced the ToF ap-
proach, which we implemented in a web platform to enable a simple
form of reuse with the simplest of abstractions: functions. Multiple
high-school teachers adopted the ToF in their materials for manda-
tory programming courses. Initial usage statistics and anecdotal
feedback suggest that it can be an effective approach to help teach
code reuse as an important software engineering principle.

Acknowledgments
This work was partially funded by the Swiss National Science Foun-
dation project 200021_184689.

References
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and How

We Know: An Exploratory Study on the Scratch Repository. In Proceedings of
the 2016 ACM Conference on International Computing Education Research. ACM,
Melbourne VIC Australia, 53–61. doi:10.1145/2960310.2960325

[2] Sebastian Baltes and Stephan Diehl. 2019. Usage and Attribution of Stack Over-
flow Code Snippets in GitHub Projects. Empirical Software Engineering 24, 3
(June 2019), 1259–1295. doi:10.1007/s10664-018-9650-5

[3] Sebastian Baltes and Christoph Treude. 2020. Code Duplication on Stack Over-
flow. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER ’20). ACM, New York,
NY, USA, 13–16. doi:10.1145/3377816.3381744

[4] Luca Chiodini, Simone Piatti, and Matthias Hauswirth. 2024. Judicious: API
Documentation for Novices. In Proceedings of the 2024 ACMSIGPLAN International
Symposium on SPLASH-E (SPLASH-E 2024). Association for ComputingMachinery,
New York, NY, USA, 1–9. doi:10.1145/3689493.3689987

[5] Luca Chiodini, Juha Sorva, andMatthias Hauswirth. 2023. Teaching Programming
with Graphics: Pitfalls and a Solution. In Proceedings of the 2023 ACM SIGPLAN
International Symposium on SPLASH-E (SPLASH-E 2023). ACM, New York, NY,
USA, 1–12. doi:10.1145/3622780.3623644

[6] Cory J. Kapser andMichaelW. Godfrey. 2008. “Cloning Considered Harmful” Con-
sidered Harmful: Patterns of Cloning in Software. Empirical Software Engineering
13, 6 (Dec. 2008), 645–692. doi:10.1007/s10664-008-9076-6

[7] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Issues
in Student Programs. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’17). ACM, New York, NY,
USA, 110–115. doi:10.1145/3059009.3059061

[8] Andreas P. Koenzen, Neil A. Ernst, and Margaret-Anne D. Storey. 2020. Code
Duplication and Reuse in Jupyter Notebooks. In 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). ACM, New York, NY, USA,
1–9. doi:10.1109/VL/HCC50065.2020.9127202

[9] Rainer Koschke. 2007. Survey of Research on Software Clones. In Duplication, Re-
dundancy, and Similarity in Software (Dagstuhl Seminar Proceedings (DagSemProc),
Vol. 6301). Schloss Dagstuhl, Dagstuhl, Germany, 1–24. doi:10.4230/DagSemProc.
06301.13

[10] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2021. A Systematic
Review of API Evolution Literature. ACM Comput. Surv. 54, 8 (Oct. 2021), 171:1–
171:36. doi:10.1145/3470133

[11] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: AMap of Code Duplicates on GitHub.
Proc. ACM Program. Lang. 1, OOPSLA (Oct. 2017), 84:1–84:28. doi:10.1145/3133908

[12] David Lorge Parnas. 1972. On the Criteria to Be Used in Decomposing Systems
into Modules. Commun. ACM 15 (1972), 1053. doi:10.1145/361598.361623

[13] Kate Sanders and Robert McCartney. 2016. Threshold Concepts in Computing:
Past, Present, and Future. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research - Koli Calling ’16. ACM Press, Koli,
Finland, 91–100. doi:10.1145/2999541.2999546

[14] Bret Victor. 2012. Learnable Programming. https://worrydream.com/
LearnableProgramming/

[15] A. Vihavainen, J. Helminen, and P. Ihantola. 2014. How Novices Tackle Their First
Lines of Code in an IDE: Analysis of Programming Session Traces. In Proceedings
of the 14th Koli Calling International Conference on Computing Education Research.
ACM, Koli Finland, 109–116. doi:10.1145/2674683.2674692

[16] D. J. Wheeler. 1952. The Use of Sub-Routines in Programmes. In Proceedings of
the 1952 ACM National Meeting (Pittsburgh) on - ACM ’52. ACM Press, Pittsburgh,
Pennsylvania, 235–236. doi:10.1145/609784.609816

https://doi.org/10.1145/2960310.2960325
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1145/3377816.3381744
https://doi.org/10.1145/3689493.3689987
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1007/s10664-008-9076-6
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1109/VL/HCC50065.2020.9127202
https://doi.org/10.4230/DagSemProc.06301.13
https://doi.org/10.4230/DagSemProc.06301.13
https://doi.org/10.1145/3470133
https://doi.org/10.1145/3133908
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/2999541.2999546
https://worrydream.com/LearnableProgramming/
https://worrydream.com/LearnableProgramming/
https://doi.org/10.1145/2674683.2674692
https://doi.org/10.1145/609784.609816

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 Code Clones Are Widespread
	2.2 Avoiding Code Clones With Code Reuse
	2.3 Environments Not Always Favor Code Reuse
	2.4 Assignments Not Always Favor Code Reuse

	3 An Approach to Promote Code Reuse
	4 Toolbox of Functions: Instantiation
	4.1 Context
	4.2 Introducing Functions
	4.3 Adding to the Toolbox of Functions
	4.4 Using the Toolbox of Functions
	4.5 Growing the Toolbox of Functions
	4.6 Managing the Toolbox of Functions

	5 Classroom Experience
	6 Limitations & Future Work
	7 Conclusion
	Acknowledgments
	References

